- People - Curriculum - Courses - Additional topics? - Skill set - Policies People ## Full - Adalsteinsson, David - Camassa, Roberto - Forest, Gregory - Huang, Jingfang - McLaughlin, Richard - Mitran, Sorin - Mucha, Peter ## Associate - Griffith, Boyce - Newhall, Katherine ## Assistant - Copos, Calina - Kovalsky, Shahar - Saenz, Pedro - Semester-long, single instructor - Distinction between "Methods" and "Computation" - Methods: - MATH668: Methods of Applied Mathematics I - MATH669: Methods of Applied Mathematics II - MATH768: Mathematical Modeling I - MATH769: Mathematical Modeling II - Computation: - MATH661: Scientific Computation I - MATH662: Scientific Computation II - MATH761: Numerical ODE/PDE I - MATH762: Numerical ODE/PDE II - Special topics: MATH891/2 | Sem. | # | Methods | # | Computation | |--------|-----|---|-----|---| | Fall | 668 | Complex variables: branch cuts,
Laurent series, contour integration Asymptotics: convergence,
Laplace's method, Watson
lemma,
steepest descent, stationary phase Bifurcation Generalized Laplace | 661 | Errors: truncation, floating point Approximation: interpolation, least squares, min-max Numerical calculus: finite differences, quadrature Nonlinear equations: simple iteration, secant, Newton Gauss elimination Numerical ODE: multi-step, multi-stage, consistency, stability, convergence | | Spring | 669 | Nondimensionalization, small parameters Perturbations: algebraic & ODE expansions, singular perturbation, multiple scale, boundary layers Eigenfunctions & WKB: particle in well, turning points, bound states, scattering matrix Homogenization: 1D, nD, solvability, Fredholm alternative PDEs: transport, characteristics, shocks, rarefactions, diffusion | 662 | Basics: linear combination, scalar product, norm, orthogonality, SVD Least squares: QR, Householder, projection Conditioning: condition number, forward & backward stability Systems: Gauss, pivoting, Cholesky Eigenvalues: Rayleigh, QR Iterative methods: Jacobi, Gauss-Seidel, SOR, Krylov | | Sem. | # | Methods | # | Computation | |--------|-----|---|-----|--| | Fall | 768 | Nondimensional parameters: scales, Buckingham π theorem Fluid models: potential, Euler, Navier-Stokes Asymptotic fluid models: lubrication, slender filament, thin films, Stokes flow Weakly nonlinear envelopes | 761 | ODEs: systems, stiffness, boundary locus, BVPs Finite difference: linear advection Finite volumes: conservation law, Hugoniot relation, Godunov schemes, high resolution | | Spring | 769 | Polymers: dilute, Oldroyd-B, reptation, kinetics Continuum mechanics: large deformation theory, hyperelasticity Geophysical models: ocean circulation, quasi-geostrophic flows, atmospheric vortices | 762 | Finite element: Galerkin, Rayleigh-Ritz, simplicia Spectral: FFT, pseudo-spectral Integral equations: fast summation, FMM Adaptive computation Lattice methods: Boltzmann, Fokker-Planck | - Stochastic calculus - Nonlinear model reduction - Deep Neural Networks - Computational geometry & topology - Optimization - Stochastic PDE - Graphs and networks - Analytical - Computational - Scholarly - Presentation - Career networking