MATHO089
FYS: Literate Scientific Computing
Syllabus

Summary. A project-based introduction to scientific computing that in addition to covering founda-
tional mathematical concepts, presents the Julia language as an introductory programming environ-
ment and uses the TEX,,; .5 scientific editing platform to refine the concept of literate programming
to the requirements of reproducible computational research.

Times MWEF 9:05-9:55AM, Phillips 224 with Zoom synchronous meeting.

Office hours | Tu 4:00-4:30PM, We 3:00PM-4:00PM Chapman 451, and by email appointment, Zoom

Instructor [Sorin Mitran

Jump to Policies: 3.2 Lessons: 4.2 Software: 5.2 Live documents: 5.4

(The instructor reserves the right to make changes to the syllabus. Any changes will be announced as early as possible.)

1 Course overview

Computational modeling of natural phenomena has become a cornerstone of scientific inquiry,
completing the traditional methods of theory construction and experimentation. The distinctive fea-
ture of scientific computation is exhaustive testing of our understanding of well-defined theoretical
models, to an extent that is not possible without machines to rapidly carry out arithmetic oper-
ations. This seminar will introduce students to the art of successful scientific simulation. Simple
models from the physical, biological, and social sciences will be introduced, given correct math-
ematical formulations, implemented in computer code, and analyzed. Concepts from the sciences,
mathematics, and programming will be introduced as needed with no formal prerequisites beyond
typical high school material. The objective will be to produce “live” computational documents
that serve as virtual experiments for some field of scientific inquiry.

Relevance of computational approaches to science requires adoption of the scientific method of
verification of the predictions resulting from conjectures (or hypotheses or theories). For scientific
computing, the conjectures are the mathematical approach and implementation into a program exe-
cuted by a computer. Predictions are obtained from program execution and verified by comparison
to known results or experiments. Such computational predictions should be reproducible. This
course adopts the Julia programming language, a general-purpose language with many features
useful for scientific computing, as the environment to introduce the practices of reproducible com-
putational research.

A key part of the scientific method is documentation of an investigation, clearly citing sources,
approaches, hypotheses, and results. Several specialized programming languages have been devel-
oped for this purpose (TpX, [TpX, Markdown), some with an explicit focus on documenting
theoretical approach and computer implementation simultaneously (web), a practice known as lit-
erate programming. The project-based approach of this course seeks to instill this practice of schol-

arship into all aspects of scientific computing, defining a literate programming approach based

upon the TEX, 4

cs platform in conjunction with Zotero reference management.

2 Course outcomes

Upon successful course completion students will be:

o able to recognize a well-formulated computational model of a natural phenomenon;

o exposed to fundamental mathematical concepts arising in computational modeling
including:

difference calculus, a computational system based on considering small increments
of quantities of interest, and that leads to differential calculus when the increments
become infinitesimally small

algebraic structures, a consistent set of rules on manipulation of mathematical
objects

linear algebra, a particular algebraic structure that constructs complex objects by
scaling and composition of simpler objects

random numbers arising from the probability of specific events arising in some phe-
nomenon

stochastic calculus, a computational system for random variables

graphs and networks to model phenomena in which component parts have a finite
number of interconnections

agent-based modeling as an introduction to the dichtomy between microscopic and
macroscopic modeling;

e introduced to basic programming techniques (e.g., comparable to COMP110 or COMP116)
including:

data types, variables, constants, definition scope
statements, expressions, and operators

control flow, conditional, iterative and recursive code
data structures, lists, trees, dictionaries

functions, arguments, parameters, return types
object-oriented programming;

e able to document computational research using rigorous scholarly practices.

3 Course information

3.1 Honor code

Unless explicitly stated otherwise, all work is individual. You may discuss various approaches
to homework problems with students, instructors, but must draft your answers by yourself. All
external sources consulted must be acknowledged and cited. Students implicitly accept this honor
code by submission of any work for grading.

3.2 Course policies

o (lass attendance is expected and highly beneficial to understanding of course topics. There
is no need to inform instructor of planned absences.

o Course grade is based upon accumulation of credit points (0-100). There is no “grading on
acurve”, but 112 total points are possible, enabling some margin of error in the coursework.

e Homework is to be submitted in typeset form as a TgXy,cs document through Sakai. Late
homework is accepted only in the case of University approved class absences. E-mail mes-
sages requesting acceptance of late homework due to any other circumstance are deleted
without review or response. Students are advised to prepare and submit homework well in
advance of the Sakai deadline to allow for unforseen difficulties. Suspension of classes due
to campus-wide events (weather, pandemic, etc.) will lead to modification of due dates or
elimination of specific assignments for the entire class.

Accessibility resources and services. The University of North Carolina at Chapel Hill facilitates
the implementation of reasonable accommodations, including resources and services, for students
with disabilities, chronic medical conditions, a temporary disability or pregnancy complications
resulting in barriers to fully accessing University courses, programs and activities.

Accommodations are determined through the Office of Accessibility Resources and Service (ARS)
for individuals with documented qualifying disabilities in accordance with applicable state and fed-
eral laws. See the ARS Website for contact information: https://ars.unc.edu or email ars @unc.edu.

Counseling and psychological services (CAPS). CAPS is strongly committed to addressing the
mental health needs of a diverse student body through timely access to consultation and connec-
tion to clinically appropriate services, whether for short or long-term needs. Go to their website:
https://caps.unc.edu/ or visit their facilities on the third floor of the Campus Health Services building
for a walk-in evaluation to learn more.

Title IX resources. Any student who is impacted by discrimination, harassment, interper-
sonal (relationship) violence, sexual violence, sexual exploitation, or stalking is encouraged to
seek resources on campus or in the community. Reports can be made online to the EOC at
https://eoc.unc.edu/report-an-incident/. Please contact the University's Title IX Coordinator (Eliz-
abeth Hall, interim — titleixcoordinator @unc.edu), Report and Response Coordinators in the Equal
Opportunity and Compliance Office (reportandresponse @unc.edu), Counseling and Psychological
Services (confidential), or the Gender Violence Services Coordinators (gvsc@unc.edu; confiden-
tial) to discuss your specific needs. Additional resources are available at safe.unc.edu.

3.3 Grading

Coursework is centered around the development of seven computational projects, with 16 points
possible in each project for a total of 112 offered course credit points.

Mapping of point scores to letter grades

Grade | Points | Grade [Points | Grade | Points | Grade | Points
A+ 101-112 [B+ 86-90 [C+ 71-75 | D+ 56-60
A 96-100 |B 81-85 |C 66-70 |D 50-55
A- 91-95 |[B-- 76-80 |C- 61-65 |F 0-49

4 Lesson plan

4.1 Course projects

The following seven projects will be developed during the course at a pace of approximately two
weeks per project:

1.

Population models. PO1
Crystals, quasicrystals, and tilings.
Image processing.

Random walks and diffusion in physics and finance.

. Monte Carlo, legislative redistricting.

Graph Laplacian and spectral clustering in machine learning.

. Flocking, schooling, and folding.

Each project introduces:

theoretical background drawn from the appropriate field of science;
mathematical concepts suitable for phenomenon description;
programming approaches to implement mathematical concepts;

representative scientific literature for the problem.

4.2 Lesson schedule

The course workcycle consists of five lessons to present theoretical material and computational
techniques, followed by an in-class session to address final questions on project preparation. The
project is due at 11:55PM on day of following class meeting. Due dates are marked in bold. A new
project is started on the project due dates.

Week |Notes |[Date |Topic
01 LO1 08/18 |Introduction to Julia and TeXmacs
L02 08/20 [Exponential, logistic population growth
LO3 08/23 | Difference equations and solutions
02 LO4 08/25 |Interacting populations: predator-prey
LO5 08/27 |Population states: Susceptible, Infectious, Recovered
LO6 08/30 |Differential equation models, correspondence principle
03 09/01 |In-class completion of Project 1
LO7 09/03 | Periodic structures, crystals, mathematical groups
LO8 09/08 | Tilings, mathematical groupoids
04 L09 09/10 |Crystals and quasicrystals in nature
L10 09/13 | Tilings in art
L11 09/15 | Diffraction, projection, visualization
05 09/17 |In-class completion of Project 2
L12 09/20 |Representation of visual information
L13 09/22 | Vectors and matrices
06 L14 09/24 | Matrix factorization, singular value decomposition
L15 09/27 |Image transformations
L16 09/29 |Image compression and reconstruction
07 10/01 |[In-class completion of Project 3
L17 10/04 |Probability and set theory
L18 10/06 |[Random walks
08 L19 10/08 | Probability distributions
L20 10/11 | Scaling, diffusion
09 L21 10/13 | Financial market modeling
10/15 |[In-class completion of Project 4
10 L22 10/18 |Deterministic versus random modeling
L23 10/20 |[Summation of many random events, Monte Carlo integration
L24 10/22 [Stochastic modeling
11 L25 10/25 |Packing within physical systems
L26 10/27 | Legislative district allocation
10/29 [In-class completion of Project 5
12 L27 11/01 |Discrete versus continuum models
L28 11/03 | Graphs and networks
L29 11/05 |[Discrete and continuum Laplace operator
13 L30 11/08 |Machine learning and clustering
L31 11/10 | Spectral clustering
11/12 | In-class completion of Project 6
14 L32 11/15 |Interacting system components: nucleons, particles, atoms, molecules
L32 11/17 |Interacting system components: agents
L34 11/19 | Clustering behavior: flocks, schools
15 L35 11/22 | Correlated motion: protein folding
L36 11/29 | Stochastic interactions: Langevin models
12/01 |In-class completion of Rroject 7

5 Computational resources

5.1 Hardware

Students are required to have a laptop, that conforms to CCI minimal standards, and is brought to
every class session.

5.2 Software

Scientific computation benefits from freely available software of high quality. One goal of the
course is to familiarize students with these capabilities and acquire the practical skills needed for
scientific computing. Students are asked to carry out the following steps to install course software.

5.2.1 Linux virtual machine

Students with laptops that use x86-64 architecture, and interested in gaining familiarity with the
Linux operating system, widely used in scientific computing, especially in high-performance com-
puting, can install the SciComp@UNC environment. All course tools have been preconfigured for
immediate use. Follow instructions at SciComp@UNC to install on a laptop with at least 24GB
free disk space and 8GB RAM.

5.2.2 Windows
1. Create a directory named C: \courses
2. Install TortoiseSVN

3. Open File Explorer and right-click to open options (“See more options” in Windows 11)
for folder C: \courses. Select SVN checkout option and enter:

URL repository: svn://mitran—-lab.amath.unc.edu/courses/MATH089
Checkout directory: C: \courses\MATHO089

Click OK, and a copy of the course material repository is downloaded to your laptop.

4. Julia programming language. Choose installation directory C: \courses\julia

Modify the System variable PATH to include C: \courses\julia\bin
5. TXyacs editing platform. Choose installation directory C: \courses\texmacs

6. Open File Explorer and right-click to open options (“See more options in Windows 11”°) for
folder C: \courses\texmacs\plugins. Select SVN checkout option and enter:

URL repository:
svn://mitran-lab.amath.unc.edu/courses/texmacs/plugins/julia

Checkout directory: C: \courses\texmacs\plugins\julia

5.2.3 macOS

1. Open the Terminal app and create a directory named ~/courses

cd ~; mkdir courses
2. Install SmartSVN

3. Open SmartSVN and select option Check out project from repository, click OK. Enter:

Repository: svn://mitran-lab.amath.unc.edu/courses/MATH089,
select MATHO89 directory

Local directory: ~/courses/MATH089

Click Continue, and a copy of the course material repository is downloaded to your laptop.

4. Julia programming language. Choose installation directory C: \courses\julia

Modify the System variable PATH to include /Applications/Julia-1.6.app/
Contents/Resources/julia/bin

5. TEXyacs editing platform.

6. Open SmartSVN and select option Check out project from repository, click OK. Enter:
Repository:
svn://mitran-lab.amath.unc.edu/courses/texmacs/plugins/julia

Checkout directory: /Applications/TeXmacs.app/Contents/
Resources/share/TeXmacs/plugins

5.3 Tutorials

Software usage is introduced gradually in each class, so the first resource students should use is
careful, active reading of the material posted in class. In particular, carry out small tasks until it
becomes clear what the software commands accomplish. Some additional resources:

e TeXmacs:

— http://www.texmacs.org/tmweb/help/tutorial.en.html

— https://www.youtube.com/watch?v=mlcqGRv7xhc

— https://julialang.org/learning/
— https://www.youtube.com/user/JuliaLanguage/playlists

5.4 Interactive documents

All course material is presented as TpXyacs documents with embedded interactive Julia sessions.
Such documents have a . tm extension and are available through svn download from the course
repository. Notes posted on the lesson plan contain translations of the live documents to . pdf or
.html formats.

Live documents allow immediate application of course topics, as shown here to construct the
Fibonacci numbers, defined as Fy=0, F, =1, F,=F,_1 + F,,_, for n> 1 a natural number, and an
early model (1202) for rabbit population growth. This is an example of recursion, a function that
calls itself, a useful programming paradigm, though not very efficient in this case.

Algorithm - Fibonacci numbers F(r)| Julia (1.6.1) session in GNU
Input: n a natural number TeXmacs
if n=0 then return 0 - function F (n)
if n=1 then return 1 if (n==0) return 0; end
return F(n—1) + F(n-=2) if (n==1) return 1; end
return F(n-1)+F (n-2)
end;
[F(0) F(1) F(2) F(3) F(4) F(5)]
[011235] (D
F.(0:5)"
[011235])
L~ F.(0:2:10) "
[01 3821 55] 3)
. F(25)
75025

	1 Course overview
	2 Course outcomes
	3 Course information
	3.1 Honor code
	3.2 Course policies
	3.3 Grading
	Mapping of point scores to letter grades

	4 Lesson plan
	4.1 Course projects
	4.2 Lesson schedule

	5 Computational resources
	5.1 Hardware
	5.2 Software
	5.2.1 Linux virtual machine
	5.2.2 Windows
	5.2.3 macOS

	5.3 Tutorials
	5.4 Interactive documents

