
MATH089 Project 7 - Agent-based models:
flocking, schooling

Posted: 11/22/21

Due: 12/01/21, 11:55PM

1 Introduction

1.1 Environment setup

� Add the Julia Agents package.

� Add the Julia InteractiveDynamics package

� Add the Julia CairoMakie package

2 Methods

2.1 Game of Life

2.1.1 Loading the pre-defined agent model

Conway's game of Life is a predefined model within the Agents package.

) using Agents

)

It can be loaded through the following instruction

) model, agent_step!, mode_step! =
Models.game_of_life(; rules = (2, 3, 3, 3), dims = (100, 100),

metric = :chebyshev)

(AgentBasedModel with 10000 agents of type Cell
space: GridSpace with size (100, 100), metric=chebyshev, periodic=true
scheduler: fastest
properties: Dict(:rules => (2, 3, 3, 3)), Agents.dummystep,
Agents.Models.game_of_life_model_step!)

1



)

A random initial state is defined through

) for i in 1:nagents(model)
if rand(model.rng) < 0.2

model.agents[i].status = true
end

end

)

Agent-based models are of special relevance to time-varying phenomena, and results are best
presented as animations instead of static plots. The InteractiveDynamics and CairoMakie
package has support for such visualizations.

) using InteractiveDynamics

) import CairoMakie

)

Define functions to visualize the state of a cell

) ac(x) = x.status == true ? :black : :white

ac

) am(x) = x.status == true ? '�' : '�'
am

)

Invoking the abm_video function executes successive steps of the Game of Life and saves the
states to a video file

) abm_video(
"/home/student/courses/MATH089/GameOfLife.mp4",
model,
dummystep,
mode_step!;
title = "Game of Life",
ac,
as = 12,
am,
framerate = 5,
scatterkwargs = (strokewidth = 0,),

)

)

2



2.1.2 Step-by-step definition of the model

Define the Game of Life rules and agent structure

) rules = (2, 3, 3, 3) # (D, S, R, O);

) mutable struct Cell <: AbstractAgent
id::Int
pos::Dims{2}
status::Bool

end

)

Define a function to build the model

) function build_model(; rules::Tuple, dims = (50, 50), metric =
:chebyshev, seed = 120)

space = GridSpace(dims; metric)
properties = Dict(:rules => rules)
model = ABM(Cell, space; properties)
idx = 1
for x in 1:dims[1]

for y in 1:dims[2]
add_agent_pos!(Cell(idx, (x, y), false), model)
idx += 1

end
end
return model

end;

) model=build_model(; rules)

AgentBasedModel with 2500 agents of type Cell
space: GridSpace with size (50, 50), metric=chebyshev, periodic=true
scheduler: fastest
properties: Dict(:rules => (2, 3, 3, 3))

Define the initial state

) for i in 1:nagents(model)
if rand(model.rng) < 0.2

model.agents[i].status = true
end

end

)

Run the model

3



) abm_video(
"/home/student/courses/MATH089/SmallGameOfLife.mp4",
model,
dummystep,
mode_step!;
title = "Game of Life",
ac,
as = 12,
am,
framerate = 5,
scatterkwargs = (strokewidth = 0,),

)

)

3 Results

4 Discussion

4


	1 Introduction
	1.1 Environment setup

	2 Methods
	2.1 Game of Life
	2.1.1 Loading the pre-defined agent model
	2.1.2 Step-by-step definition of the model


	3 Results
	4 Discussion

