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Abstract

We attempt to detect partisan gerrymandering by establishing a baseline distribution

of electoral outcomes in North Carolinas 2016 Congressional election. We follow the

model of Bangia et al. (2017) and introduce a Stratified Sampling method to this

domain to improve upon state of the art sampling techniques.

Our implementation balances wide exploration and narrow sampling through a

two step procedure. First we stratify the space of all possible NC redistricting plans

and then sample from these strata. This procedure is highly parallelizable allowing

for more rapid map generation and produces a statistically invariant measure of our

final observables. By implementing Stratified Sampling in this domain for the first

time, we produce a sample of redistrictings that is consistent with prior findings.

Further, the resulting ensemble of 38,000 maps indicates that the 2012 and 2016

enacted plans in North Carolina are atypical and notably unresponsive to changes

in voters’ party preference.
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1

Introduction to Gerrymandering

Responsive democracies are designed to translate voter preferences into governmental

representation. In the locality based representative democracy of the United States,

the geography of the districts that a voter belongs to influences this translation.

Whether a voter falls in the majority or minority of their district can be directly

influenced by how the geographic borders of that district are defined. In aggregate,

given precisely the same vote counts in an election, different redistricting maps can

produce dramatically different outcomes.

Consequently, the vote counts in an election can be thought to produce a dis-

tribution of possible electoral outcomes dependent on the particular district map

that was chosen to do the aggregation. The electoral outcome that materializes is

a consequence of the map that is chosen. Bad actors could work to game this phe-

nomenon and choose maps that produce tail-end electoral outcomes in their favor.

Understanding the underlying distribution of electoral outcomes across all maps is

essential in judging the typicality of the outcome that materializes.

Gerrymandering is the practice by which the enacted maps intentionally produce

these tail-end electoral outcomes. Whether it is choosing maps that elect fewer-
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Figure 1.1: Both North Carolina Congressional Redistrictings in 2012 and 2016
produced 10R-3D seat splits in spite of approximately 50%R - 50%D popular vote
splits. While previous work Herschlag (2018) has shown both to be the tail-end
electoral outcomes, the 2012 enacted gerrymander appears to violate compactness
criteria more clearly than the 2016 enacted gerrymander. Sophisticated data science
techniques allowed for the creation of the more covert 2016 gerrymander. As a result,
more sophisticated methods are required to detect it.

than-typical racial minorities or maps that elect more-than-typical incumbents, ger-

rymandering characteristically produces atypical electoral outcomes given the vote

counts in an election. Here we focus on partisan gerrymandering: the practice by

which redistricting maps are drawn to disadvantage the opposition party and make

electoral outcomes unresponsive to changes in voter party preference.

Partisan gerrymandering often leads to disproportionality between the percent-

age of votes cast for a party and the percentage of seats won by the same party. For

example in 2016 Democrats in North Carolina earned 48.3 percent of the total vote

cast in House races but won three of thirteen possible seats, just 23 percent [Astor

and Lai (2018)]. Discrepancies like these have motivated gerrymandering detection

metrics like the efficiency gap [Stephanopoulost and McGheeft (2015)]. However,

proportionality dependent metrics break down when considering the natural parti-

san geography of a state. For example in Massachusetts, Republicans won zero seats

in 2018 despite garnering over 30 percent of the total vote. This discrepancy pro-

duces an efficiency gap of `14% in favor of Massachusetts Democrats [Bycoffe et al.

(2018)], well above the 8% threshold recommended to detect partisan gerryman-

dering [Stephanopoulost and McGheeft (2015)]. However under closer examination,

when following all legal compliance criteria, no majority Republican district can be
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produced in the state [Bycoffe et al. (2018)]. In fact, the observed outcome is not

atypical at all. Rather the lack of proportionality is a feature of the high uniformity

with which Massachusetts Republican voters distribute themselves throughout the

state. A lack of proportionality is merely a downstream consequence of tail-end map

selection; not a necessary nor sufficient condition to suggest atypicality of an electoral

outcome. The same can be said for visual inspections for district compactness [Figure

1.1], which are not sufficient to spot more sophisticated partisan gerrymanders.

The failures of downstream metrics like proportionality and compactness high-

light the difficulty of rigorously detecting this phenomenon [Chambers et al. (2017)].

Consequently, more complex techniques have been developed that better distill the

problem of partisan gerrymandering to the detection of electoral outcome anomalies.

The focus of this work is to build upon one such method designed by Bangia et al.

(2017). Specifically we introduce a Stratified Sampling technique to this domain for

the first time.
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2

Detecting Gerrymandering: A Review

The method outlined by Bangia et al. (2017), models the underlying distribution of

electoral outcomes by building an ensemble of possible redisticting maps. Using this

method one can then directly quantify the typicality of the outcome produced by an

enacted plan. If an enacted plan’s outcomes fall significantly far on the tail ends of

a distribution, it is suspected to be a partisan gerrymander.

Using this ensemble of possible redistricting maps has demonstrated an ability

to capture the partisan geography of a state [Chen and Rodden (2013)] and avoids

many of the shortcomings of other detection methods [Chen and Rodden (2015)].

As a result, it has found success as evidence in litigation challenging partisan ger-

rymandering in North Carolina, specifically in the Rucho v. Common Cause (2018)

case.

This method uses a three step process. (1) It runs a Monte Carlo algorithm

to randomly generate redistrictings, considering exclusively non-partisan criteria re-

quired for legal compliance. We refer to the collection of maps it produces as the

ensemble of maps. (2) Historical voting data from an election is applied to the ensem-
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ble of maps to simulate the number of Democratic and Republican representatives

that would be elected on each map in the ensemble. Since each map aggregates the

voter counts differently, these variations in the electoral outcomes give a distribution

of results. (3) Considering these outcomes in combination produces a distribution of

expected election outcomes with which we can judge the typicality of enacted maps.

The first step of this process, building an ensemble of all possible North Carolina

redistrictings, is both crucial and challenging. As the number of possible precinct to

district assignments for North Carolina’s US House of Representatives Congressional

Map is intractably large 1, only a very small sample of possible maps can be taken.

In spite of this, the sample produced must be representative of all possible compliant

redistricting maps in order for subsequent claims about the distribution of electoral

outcomes to be valid. Ensuring this representativeness is a significant challenge. It

is the goal of the MCMC process, the sampling methods we outline below, and our

contributions to construct such a sample.

2.1 Formalizing the Problem

We begin the process by creating an abstraction of North Carolina as a graph, G “

pV,Eq where a node v P V is an individual precinct, and an edge pv1, v2q P E is

present if v1 and v2 share a border. From this graph, the next step is to partition the

graph into 13 districts, in the case of North Carolina. So, a redistricting plan can

now be formalized as a partition of V into 13 sets. Let ξ : V Ñ D be a function that

maps each precinct to a district, so for a precinct v P V , if ξpvq “ i then precinct v is

in the ith district. Furthermore, let Dipξq “ tv P V |ξpvq “ iu be the set of precincts

that compose the ith district. More plainly, ξ is a Congressional redistricting map of

North Carolina.

1 There are more than 132500 ways of partitioning the approximately 2500 precincts of North
Carolina into 13 Congressional Districts. For scale there are an estimated 1080 atoms in the universe
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Under this formulation, it is clear to see the combinatiorial nature and immense

magnitude of this redistricting space. However, we are not interested in all possible

maps, we are only interested in maps that are ”reasonable” [Bangia et al. (2017)].

In the case of North Carolina, Bangia et al. (2017) define a reasonable map as one

in which:

• Districts have equal population pwithin .01%q

• Districts are reasonably compact

• Counties are split as infrequently as possible

• The redistricting does not violate the Voting Rights Act

• The redistricting is drawn without the use of any partisan data including

demographic information or past voting data

• The redistricting must be contiguous

These remaining constraints are encoded into a score function J that takes in a re-

districting ξ and returns a score, where a lower score represents a map that better

follows these required constraints. For each of these constraints we develop an indi-

vidual score function.

Jppξq, the population score measures how equally spread the population is across the

districts.

Jppξq “

g

f

f

e

13
ÿ

i“1

˜

pop pDipξqq
1
13

ř13
j“1 pop pDjpξqq

´ 1

¸2

, poppDiq “ total population of ithdistrict

(2.1)

JIpξq, the isoparametric score is a mathematical forumlation of compactness. It re-

turns the sum of the isoparametric ratios of all districts: a function that is minimized
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by a circle.

JIpξq “
13
ÿ

i“1

„

p
`

Dipξq
˘

2

area
`

Dipξq
˘ , ppDiq “ perimeter of Di, areapDiq “ area of Di (2.2)

Additionally, Bangia et al. (2017) include a county splitting energy and a minor-

ity score energy. In our implementation of Stratified Sampling we did not include

these scores.2 Jcpξq, the county-splitting score measures and penalizes split counties.

Jmpξq, the minority score measures the degree to which districts with the largest

number of African-American voters reach the target percentages set by the Voting

Rights Act. Next, we construct weights wp and wI that re-scale the output of these

score functions, to ensure one does not dominate the other.3 The score function we

implemented Jpξq is defined as:

Jpξq “ wpJppξq ` wIJIpξq

2.2 Markov Chain Monte Carlo

These scores now give us a way to sift through the immense and intractable number

of maps. The roadmap is as follows: we start at an initial map and propose a small

incremental change. We decide whether or not to move to that incrementally changed

map based on its score. If the changed map has a better score than our current map

we are more likely to move to it. If we choose not to move to the changed map we

propose another change and repeat. We continue this process, moving throughout

the space until we have sampled it sufficiently. To start this process we first convert

2 We chose not to include county splitting energy and minority score energy as minimize the
number of parameters to tune, in order to more easily identify implementation level problems from
parameter tuning problems.

3 Without the inclusion of these weights one can imagine a scenario in which a very low (good)
score in isoparametric overshadows a high population score resulting in what appears to be a good
holistic score. Weighting ensures that they operate on the same scale.
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a map’s score into a probability. For each ξ in the set of possible redistrictings R,

and for a tuning parameter β the probability of finding a given ξ is defined as :

P pξ, βq “
e´βJpξq

ř

ξPR e
´βJpξq

This parameter β is a positive constant that acts as a lever that tempers the effect

of the score function4. When beta is low5 two maps with a different score will have a

more similar probability than they would with a high beta. As β Ñ 0, the probability

distribution over all ξ P R limits towards a uniform distribution. Finally we set a

compliance threshold, such that if the component scores for a given redistricting are

below their respective thresholds, we declare the redistricting compliant.

We define the set of all possible compliant maps as Rc. Under this formulation,

our goal is now to find a representative sample of all compliant plans R̂c Ă Rc. This

ensemble of maps R̂c is used to produce a distribution of observables π̂pxq which

should approximate the distribution of observables over Rc, πpxq if the ensemble

R̂c is representative. In this domain, the observable we are interested in is the

distribution of electoral outcomes in the 2016 Congressional election. This is done

using the Monte Carlo Markov Chain (MCMC) algorithm. In order to move through

the space we need a way of transitioning from one redistricting to another. In practice

we propose a new state by making a small change to our current redistricting: we

create a new state ξ1 by flipping a single precinct (node) in the graph of ξ from one

district to another. The transition probability Q of moving from ξ to ξ1 is defined

4 It may be helpful to think of space as a landscape where maps with higher probability exist in
valleys or wells, and maps with lower probability exist on hills or mountains. Under this analogy,
increasing beta (decreasing temperature) has the effect of making the mountains taller and the wells
deeper, incentivizing remaining in areas of good maps (the wells), while decreasing beta (increasing
temperature) has the effect of shrinking the mountains, making them easier to traverse.

5 Beta is often thought of as ’inverse temperature’ where a temperature“ 1
β , so a high temperature

would be equivalent to a low beta value and vice versa.
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by the relative difference in their scores:

Qpξ, ξ1q9e´βpJpξ
1q´Jpξqq

Now that we can move between states, we can move through the redistricting

space, sampling from R.

2.3 Previous Sampling Methods

Constant Temperature Sampling Constant temperature sampling is the most simplis-

tic Metropolis-Hastings sampler. The constant temperature sampling scheme sam-

ples while keeping the value of β constant. This sampling scheme can be appealing

for computational purposes; however, there are several disadvantages to this method.

For example, at a high β the sampler is much more likely to ’downhill’ towards higher

probability maps. As such it may be practically impossible6 to get out of a particu-

lar region of space. While at a low β it is easier to traverse through space, but the

sampler is less likely to come across compliant maps. Because it appears that this

energy landscape is highly irregular, a singular beta value is insufficient for producing

a representative sample in a reasonable amount of time .

Simulated Annealing This ethos that a singular β value is insufficient leads directly

into the next sampling method: Simulated Annealing. The intuition is that we can

start with a low β value, at which we are more likely to move from a low score (likely

compliant) to a high score (unlikely to be compliant) map7. This allows us to quickly

move through the space, then once we are sufficiently far away from our last point,

6 Given infinite time it will be possible to traverse the entire space at any β value, but ensuring
that this happens in a reasonable time is the main onus for developing and testing new sampling
methods.

7 The higher beta is, the closer we are to taking a uniform random walk through the space. As
beta decreases we are more likely to walk ’uphill’ than we are with a high beta value.
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we slowly start increasing our β value, descending into a ’lower’8 area of space that is

more likely to have compliant maps. Once in this area, we keep the sampler at a high

β and sample the area for (hopefully) compliant maps. This process is then repeated

until a sufficient sample of maps are found. This method also has a few drawbacks:

first it is difficult to decide how long to stay in each of the three stages, and what

to set the β value to for each stage. It is possible that with the first low β value,

we are still unable to reach certain areas of space, or that we don’t increase beta

for long enough, meaning we are unlikely to end up in a region of compliant maps.

Additionally Simulated Annealing lacks the invariant measure that we have on the

space: when we swap the β values in the different stages of the Simulated Annealing,

we no longer meet all the required assumptions for our MCMC algorithm. Since we

alter the probabilities of transition without regard to the underlying distribution,

the invariant measure is lost. This lack of an invariant measure loses us the ability

to rigorously claim that we have sampled the space well and have converged to the

underlying distribution of compliant maps, Rc.

Parallel Tempering This insight leads us to the next logical step in samplers: Parallel

Tempering. The goal is to have the benefits of simulated annealing, where changing

β helps us both to traverse the space and sample areas of compliant maps, but

to also maintain our invariant measure on the space. The way this is done is by

extending our search space to include a dimension for β. For Parallel Tempering,

we have n samplers all working at once and in tandem. Each sampler begins at a

different β value. As these samplers propose steps to traverse through the graph of

redistrictings, they can also propose a ’step’ through β space. They can propose to

swap β values with one of the other samplers. Because they propose these swaps in

8 Lower here again refers to the energy landscape analogy where maps with higher probabil-
ity (lower score) are in wells or valleys, and maps with lower probability (higher score) exist on
mountains or hills
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β value with the same transition probability as one would between two maps, we do

not lose our invariant measure on the space. The intuition here is that the samplers

with higher beta values will traverse the space more easily, and through swapping,

be able to descend into areas with higher probability maps. The sampler with the

lowest β value is the sampler from which we actually gather our sample. This is

the biggest drawback for Parallel Tempering: although we utilize many processors

at once to run the samplers, we are only sampling from one at a time. This leads

us to the sampling method we implemented: Stratified Sampling. With this method

we have the ability to parallelize and sample from many areas of space at once.
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3

Stratified Sampling

3.1 Overview

Canonically in statistics, Stratified Sampling is the procedure by which one can sam-

ple from a global distribution by splitting it into smaller groups. Under the canonical

scheme these groups, called strata, must be homogeneous, and every member of the

global distribution must be assigned to one stratum and only one stratum. After

these strata are created, one can perform simple random sampling on each stratum.

Traditionally, this process is done as a way of reducing variance, as it produces a

weighted mean of many smaller samples, which has a lower variance than a simple

arithmetic mean of a larger single sample. In the context of our MCMC algorithm,

we take the flavor of Stratified Sampling but make substantial changes.

Stratified Sampling In looking at the short-comings of the previously explored sam-

pling methods, we can develop a list of traits that we would like to have in a sampler.

First, we want the ability to traverse through all regions of space without getting

caught in enegry wells. Secondly, we want to maintain our invariant measure. Third,

we want the ability to parallelize our sampler to reduce effective run time. Stratified

12



Sampling checks all of these boxes.

We follow the model of a Stratified Sampling approach originally proposed by

Torrie Valleau (1977) that has found widespread use and success in computational

chemistry problems where long posterior tails play an essential role (Boczko Brooks

1995; Berneche Roux 2001). Similar to the map sampling problem we are interested

in, this class of application suffers from high dimensionality of sample space, multi-

modal target distributions πpxq and a particular interest in low-probability nodes.

As a result both domains experience high computational cost of the πpxq evaluation

and slow convergence of the MCMC estimate.

The Stratified Sampling procedure seeks to address these challenges by dividing

up or stratifying the sample space into many smaller MCMC sampling problems.

Overlapping window functions, or strata ψipxq, are defined to confine the MCMC

walks to their corresponding distributions, πipxq9ψipxqπpxq. If a selected window

contains a high energy region sampling is confined to it by the window functions,

which enables much more efficient coverage of low probability areas and ensure the

discovery of widely separated peaks in multi-modal landscapes.

After sampling these diverse regions of state space independently, they must be

combine to approximate the whole of the region sampled (Dinner et al. 2017). To

do so, we use an implementation of the Eigenvalue Method for Umbrella Sampling

(EMUS) described by Matthews (2016) and originally proposed by Thiede (1977)

and Dinner et al. (1977).

Implementation Overview: Here we adapt the Stratified Sampling technique to this

domain for the first time. Through this application we seek principally to produce

a representative sample of all possible compliant maps in North Carolina. Since

the space of possible North Carolina redistrictings is intractably large it cannot

be subdivided prior to sampling. To solve this problem we introduce a two-phase

13



Figure 3.1: Stratified Sampling
works by defining acceptance
functions ψi that bound the
space into strata. Within each
of these bounded strata an
MCMC sampler runs and pro-
duces a local distribution of ob-
servable π̂ipxq (in this domain
electoral outcomes). These local
distributions are then merged
into a global observable distri-
bution π̂pxq.

technique to produce the sample. In phase1 we perform an MCMC walk and learn

how to subdivide the space. These overlapping subdivisions of the space are called

strata1. In phase2 we perform an MCMC walk inside each strata. From each of

these walks we collect a sample of maps and generate a corresponding distribution of

electoral outcomes π̂ipxq for each strata. Finally we merge these local distributions

to produce our final global distribution of outcomes for the vote counts in the 2016

Congressional election in North Carolina π̂pxq. We compare our final sample of maps

and it’s resulting global distribution with enacted redistricting plans and ensembles

from other sampling methods.

3.2 Phase 1: Learning Strata

Goal: In phase 1 we aim to generate numerous strata that subdivide the space

of possible redistrictings. The goal is to define the regions of space that contain a

representative sample of all compliant redistricting maps into strata. Phase 1 does

not seek to actually collect a sample of maps, so encouraging movement throughout

the space is more important than focusing exclusively on low energy regions. Through

the techniques implemented in phase 1 we learn both the location and size of the

1 In this case our strata will be defined as spheres that bound regions of space.
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strata that will later be explored in phase 2.

3.2.1 Distance and Strata Definition

A strata is defined by a window function ψipξq, and its centroid: Ci. ψipξq determines

whether or not a given map ξ is contained within the ith strata. And Ci is the map

located at the center of the ith stratum. Additionally below we define the Metric

Space pR, ρq as well our window function ψipξq.

Defining Distance: To calculate the distance between two maps ξ1 and ξ2, we first

create a 13-dimensional vector for each map. Each element in the vector is composed

of a tuple of latitude and longitude pairs. Each of the 13 districts is assigned a

latitude and longitude based on the average latitude and longitude of all of the

voting precincts assigned to it. This generates a 26-dimensional vector (13 districts

by 2 geographic-dimensions) with which we can embed states in space.

ρpξ, ξ1q :“
13
ÿ

j“0

pξxj ´ ξ
1
xjq

2
` pξyj ´ ξ

1
yjq

2, ξxj “ latitudepξjq, ξyj “ longitudepξjq

Defining Phase 1 Strata: With our metric space we can now compute the distance

between a strata’s centroid map Ci and some proposed map ξ which will be used by

our window function ψi to constrain the MCMC walk within a strata. The function

ψipξq rejects proposed redistricting plans if ρpCi, ξq falls beyond some predefined

radius r. If a proposed redistricting falls within r it is accepted only if it meets

contiguity criteria and would have been accepted if radius were not a factor2.

ψipCi, ξq :“

#

accept ρpCi, ξq ă r

reject ρpCi, ξq ě r

2 See A.1 for an analysis of radius definition in R26
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In this implementation a strata centroid Ci is defined by a previous step that

did not satisfy ψi´1. This previous plan, however, satisfied all other step acceptance

criteria (e.g. contiguity). After the i ´ 1th strata terminates we select the most

recently rejected redistricting plan to become the centroid Ci for the ith strata and

the same sampling procedure begins, though this time confined by ψi. We use this

strata creation criteria for simplicity, guaranteed overlap between strata, and for its

tendency to follow energy gradients 3. When instantiating the first strata, we begin

with either the North Carolina Judge’s Map4 or the enacted North Carolina 2016

Map.

3.2.2 Dynamic Radius Allocation

Constraining strata by a constant predefined radius r proved ineffective at allowing

for proper exploration. A constant radius relies on the fact that states are embedded

throughout this R26 vector space in roughly equal density. This is not the case as seen

in 3.2. Many steps in the MCMC process have order of magnitude variability in their

distance from their strata centroid based on the region of space they are exploring.

This leads to the case where the radius is either too large and the sampler never

attempts to leave the stratum or the case where the radius is too small and nearly

all steps are rejected due to being outside the boundary. To solve this problem, we

introduce on-the-fly dynamic radius allocation. By monitoring the behavior exhibited

inside a strata during the MCMC walk we allow for either the reduction or expansion

of a stratum’s radius during phase1. We define each ψi with a radius ri equal to a

3 In future implementations a better heuristic for new strata selection could be devised. Perhaps
calculating the energy gradients of all exit points to inform strata selection could be possible.
Additionally, we do not constrain ψi based on it’s overlap with neighboring strata. In the future
some optimal volumetric overlap could be calculated when defining new ψi
4 The NC Judges map was created by a non-partisan panel of North Carolina Federal Judges

following only legal compliance criteria. As a result it can be used as a good benchmark for what
a possible non-gerrymandered map might look like.
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Figure 3.2: The average distance of steps taken from a given centroid Ci varies
greatly in different regions of space. Some centroids have many proposed redistrict-
ings densely packed in close proximity, while others exist in sparse regions of space.
Here the distance between 2 million proposed steps and their corresponding centroid
are presented in a probability density histogram. Not visible are the thousands of
steps taken at an order of magnitude lower distance (all contained in the first bin).
This variability in distance makes a fixed radius inappropriate.

default r and then adjust ri if necessary as the MCMC walk proceeds. 5 We define

an expansion factor EF and reduction factor RF to monitor this behavior.

EF “

[

|exitSteps|

exitThreshold

_

RF “

[

|consecutiveInsideSteps|

insideThreshold

_

r1i “ r ˚ 2EF´RF

consecutiveInsideSteps is incremented with each MCMC accepted step that is also

5 After much parameter tuning we set a default radius of 0.1. This balanced the frequency with
which reduction and expansion of ri occurred during phase1.
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accepted by ψi. exitSteps is incremented whenever ψi rejects a step and it is simul-

taneously rejected by the MCMC process. When this occurs consecutiveInsideSteps

is reset to 0. Thresholds are set to allow the sampler to explore within the newly

sized stratum and to globally balance expansion and reduction occurrences6. This

function for ri allows the definition of radius and consequently ψi to be dynamically

updated. Empirically this ameliorated the problem of the MCMC process never at-

tempting to exit the stratum in high density regions of space (a step that is required

to continue making new strata) when radius was too big. Additionally, it prevented

the case in which radius was too small that all of the samplers steps were outside

the radius and therefore rejected, leading to a deadlock.

3.2.3 Traversing the Energy Landscape

During phase1 we aim to subdivide regions of space into strata such that the regions

contain a representative sample of all compliant redistricting maps. To ensure that

we reach all of these regions we chose to run phase1 at a hot temperature (β “ 0.01).7

We are not concerned with the sample of maps produced by phase 1, only that the

strata it produces can produce a representative sampled in phase 2. In 1.1 low β

consistently produces new strata, while MCMC processes run at higher β seem to get

stuck and stop creating new strata. Furthermore, not only are more strata produced

by low β but the centroids produced are more geographically diverse 8.

6 Tuning these threshold parameters resulted in a exitTheshold of 500 steps, and insideTheshold
of 10,000 consecutive internal steps

7 High temperatures (low β) are good at quickly traversing regions of space and climbing large
energy deltas. This behavior is ideal for phase 1. Low temperatures (high β) are good for generating
many maps in low energy regions of space. This behavior is ideal for phase 2.

8 Producing strata centroids that are more geographically diverse is a sign that we are ”mixing”
well. Suggesting that we are traversing the space effectively and finding regions that contain variable
maps. See A.3 for more on centroid mixing
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Figure 3.3: Here the effect of beta value on phase 1 ’s ability to create new strata
to explore is shown. While low β at 0.01 is slower to create new strata early on, it
ultimately creates more strata over the long-term. We hypothesize that this is a result
of higher β (0.1 or 1.0) following energy gradients more closely and consequently
move faster when the energy gradient is clear, but slow down once they reach energy
wells. Since the lowest β most consistently explored the space and produced the
most strata, β of 0.01 was the most aligned with the goals of phase 1

3.3 Phase 2: Sampling Strata

Goal: After defining the strata we want to explore in phase1, we aim to sample

each strata in phase 2. Additionally, we seek to measure the overlap between strata

and the movement of MCMC steps between them. This information is later used

to merge the individual electoral outcome distributions for each strata πipxq into a

global distribution πpxq. In a highly parallelizable process we iterate through all of

the strata, calculate this overlap, and explore them in depth to produce a sample of

redistricting maps.
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Algorithm 1 Stratified Sampling: Phase 1

Let Xn be the MCMC process
Let a strata be defined by ψi, the window function with centroid Ci and radius ri
Let S be the collection of strata ψi discovered.
Let EF and RF be the expansion and reduction factors as defined previous.

Define first strata ψi
Begin Xn at starting map Ci
for proposed map ξ P Xn do:

ri “ 2EF´RF

if ψipξq = Rejected then
if ξ is Compliant then

Cj “ ξ
EF “ RF “ 0
Define new strata ψj
S` “ ψj

end if
end if

end for

return S

3.3.1 Defining Phase 2 Strata:

Using the strata centroids Ci and radii ri learned in phase 1 along with the same

metric space pR, ρq, we redefine ψi in phase 2. We now take a probabilistic ap-

proach to ψi. The function ψipξq rejects probabilistically based on the magnitude

of ρpCi, ξq. As ρpCi, ξq grows the probability of rejection increases. The radius ri

learned in phase1 now serves as the standard deviation parameter9 on the acceptance

probability function:

PacceptpCi, ri, ξq :“ e
´

ˆ

ρpCi, ξq

ri

˙2

Let x „ Uniformp0, 1q

ψipξq :“

#

accept x ă PacceptpCi, ri, ξq

reject x ą“ PacceptpCi, ri, ξq

9 The the PDF created is centered at ρ “ 0 and with Ci at its center. As steps move away from
the centroid the probability they they will be rejected increases with a standard deviation of ri.
This significantly softens the rejection criteria from phase1
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Defining strata with a Gaussian probability ψi causes sampling to occur more

heavily near the centroid10 and allows for sampling to occur beyond the radius ri

with low probability. As compared to hard constraints, this allows for more overlap

between strata and prevents behavior where the MCMC process over-samples the

boundaries of a strata 11. In addition to the acceptance probability from ψi a step

must also be accepted by the MCMC transition probability, and must be contiguous.

In order to combine all of π̂i in the final step of the Stratified Sampling algorithm,

we must record the overlap between each strata. In our current implementation we

define this overlap as an overlap integral. Let Xin be defined as the n step markov

chain walk taken by one sampler in strata i. Let F be our overlap matrix such that

F risrjs represents the overlap between strata i and strata j.12 For each Xik P Xin

we calculate the probability that the current ξ would be in strata j and update the

overlap matrix:

F risrjs` “ PacceptpCj, rj, ξq

We will ultimately use these values to appropriately weight each π̂ipxq so that we

can create the global π̂pxq distribution.

3.3.2 Building Local Ensembles of Maps:

For each strata, using this ψi, an independent MCMC sampler starts at the centroid

and samples until a finite number of maps are discovered.13 We run these samplers

at a much cooler temperature pβ “ .9q. The intuition here is that now that we have

10 Since the sampler is more likely to be rejected while stepping towards the bounds, the Gaussian
has the effect of pushing the sampler back towards the middle of the stratum

11 We hypothesize this to be the case when strong energy gradients force the MCMC sampler to
stick to the boundary of a strata instead of exploring the entirety of the space it is assigned.

12 In theory F risrjs should equal F rjsris, but due to the randomness of the walks this is not always
the case. Empirically they seem to be reasonable close.

13 Currently each strata is sampled until either 100 maps are generated or an exit criteria is reached
(typically 10 million consecutive steps are rejected). Future implementations should sample strata
until chain convergence is achieved [?]
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defined the areas we want to explore, we want to find the compliant maps within

each stratum. Phase2 produces collections of redistricting maps local to each strata

learned in phase 1 and a single matrix defining the overlap between each pair of

strata.

Algorithm 2 Stratified Sampling: Phase 2

Let ψi be the window function for strata Si in the set of all strata S.
Let Xin be the MCMC process in Si
Let R̂ci be the set of maps sampled in Si
Let F be the strata overlap matrix.

for each Si P S do:
Begin Xin at start point Ci
for proposed map ξ P Xin do:

if ψipξq = Accepted then
for each Sj P S do:

F[i][j] += PacceptpCj, rj, ξq
end for
if ξ is Compliant then

R̂ci += ξ
end if

end if
end for

end for

return R̂c , F

3.4 Merging Observable Distributions

In order to merge the π̂ipxq into our desired π̂ipxq we have to use the overlaps we

calculated during the sampling phase. Each F risrjs represents the overlap between

strata i and strata j, calculated while in strata i. We first have to normalize this

matrix columnwise, so each column F ris is a valid PDF for the distribution of overlap.

After each column is normalized, we want to find the eigenvector z summing to one

of F. Finally we can construct our desired global distribution:

π̂pxq “
ÿ

ziπ̂ipxq
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Algorithm 3 Stratified Sampling: Merging Strata

Let F be the strata overlap matrix.
Let R̂ci be the ensemble of maps sampled from strata i.

for each column j in F do
F[j] /= sum(j)

end for

Let π̂ipxq = observable distribution on R̂ci
Let z “ Eigenvector of F
Let π̂pxq “

ř

zi ¨ π̂ipxq

return π̂pxq
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4

Discussion

4.1 Results

The Stratified Sampling method we designed and implemented produced a final

ensemble of 38,000 redistricting plans. We produced two samples following the entire

Stratified Sampling procedure including phase1, phase2, and the merging procedure.

Each of the two began with a different seed map from which sampling began, either

the NC Judges Map or the NC 2016 enacted map. The Phase1 run from the NC

Judges seed produced 200 strata, the NC 2016 seed produced 180 strata, and in

each subsequent Phase2 100 maps per stratum were generated for the ensemble. On

the final ensemble of 38,000 maps we aggregate the 2016 Congressional vote counts

to produce distributions of election outcomes for each of the 380 strata. We then

weight each strata distribution by the eigenvector produced from the overlap matrix

to generate the final global distribution of electoral outcomes.

To visualize these outcomes in a way that distills the characteristic packing and

cracking behavior of gerrymandering, we borrow a visualization developed by Bangia

et al. (2017) which can be seen in figure 4.1. This visualization orders districts from

the most Democratic to the most Republican for each map in the ensemble. It then
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Figure 4.1: This figure displays our observable of interest: the distribution of the
percentage of Democratic votes cast in each of North Carolina’s 13 Congressional
Districts. Ordered from most Republican to most Democratic, each boxplot is gen-
erated by aggregating the votes cast in 2016 Congressional election according to each
redistricting plan in our ensemble of maps. Each boxplot shows the range of out-
comes in each district that we consider typical. The non-partisan Judges plan seems
to be typical in most districts while NC2012 and NC2016 have more Democrats
than typical in the most highly Democratic districts (evidence of packing) and fewer
Democrats in districts which are closer to parity between Democrat and Republican
(evidence of cracking).

computes the Democratic vote fraction inside each of these ordered districts and pro-

duces a distribution of vote fraction across the ensemble. We exclude outliers from

these distributions in order to make them more clear, but full distributions shown

as violin plots can be found in A.4. In 4.1 the median values of the distribution of

Democratic vote fraction across the 13 districts increase in a relatively smooth and

linear fashion from most Republican to most Democratic. The same can be said for
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the NC Judges map. 1. However the NC 2012 and NC 2016 maps follow a much

less linear trend. In the three most Democratic districts these enacted plans are far

above the range of the ensemble distribution, producing districts with much higher

democratic vote fractions than typical (packing). In the districts that fall close to

party parity in the ensemble and consequently could be flipped Democrat or Repub-

lican, the enacted plans fall below the range of the distribution, producing districts

with much lower democratic vote fractions than typical (cracking). In combination a

large jump between packed and cracked districts is present in the graph as compared

to the medians of each distribution and the NC Judges map.

In 4.2 we compare the output of the ensemble produced by Stratified Sampling

and the ensemble produced by a previously implemented technique; Simulated An-

nealing. The ensemble produced by the Simulated Annealing procedure is comprised

of 2,000 compliant maps and serves as a good benchmark for validating our sample.

As seen in the visualization 4.2, while the medians of both ensembles follow a simi-

lar trend and find NC2012 and NC2016 to be atypical, they are dissimilar in many

instances. This dissimilarity between methods brings into question the representa-

tiveness of the sample we produce and its corresponding outcome distribution.

To further assess whether our method produced a representative sample of all

possible compliant maps, we compare the final output distributions of sampling pro-

cedures started from different seed maps. The output distributions from samples

starting at the NC Judges map and the NC 2016 enacted map are visualized in 4.3.

While both show the NC 2016 and NC 2012 plans to be atypical and follow a rel-

atively smooth trajectory, they are dissimilar in many districts. This dissimilarity

suggests that we are not sampling the space sufficiently well in either sample alone.

This may be a result of not running phase1 sufficiently long to discover strata that

1 Since the NC Judges map was created by a non-partisan panel of North Carolina Federal
Judges following only legal compliance criteria, it is a good benchmark for what a possible non-
gerrymandered map might look like.
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Figure 4.2: This figure displays the same electoral outcome distributions produced
by the Stratified Sampling ensemble as in 4.1 in the light blue boxplots. In the
dark blue boxplots we present the outcome distributions for an ensemble generated
through Simulated Annealing produced by previous work [Herschlag (2018)] here we
present the distribution of the percentage of Democratic votes cast in each of North
Carolina’s 13 Congressional District.

contain a representative sample of all compliant maps or it may be a result of not

running phase2 sufficiently long enough to explore each strata fully. While it is still

unclear at this time which is the culprit, moving towards chain convergence [Raftery

and Lewis (1992)] as stopping criteria will help ensure that we are sampling the space

well. Hyper-parameter tuning may still require further attention. Specifically, while

we develop a heuristic for how to set the β value in each phase in 3.3, more tuning

is likely necessary.2

2 We believe that phase1 could be served by an even hotter temperature sampling at β below
0.01. Preventing or delaying the asymptotic behavior in strata creation seen in 3.3 will likely help
full exploration of the space
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Figure 4.3: This figure displays the same electoral outcome distributions as 4.1
but breaks our ensemble into two halves based on the starting-point of the Stratified
Sampling run. The light blue boxplots began at the non-partisan Judges redistricting
plan, while the dark blue boxplots began at the NC2016 enacted redistricting plan.
The similarity of the distributions created by each of these independent samples,
suggests that we are sampling the space well.

4.2 Conclusion

The key challenge that any sampling method faces when attempting to collect a rep-

resentative sample of all compliant redistrictings is to balance wide exploration and

narrow sampling. The two phase Stratified Sampling technique we design and imple-

ment here addresses this problem directly. In phase1 we perform wide exploration

at low β in order to create strata. In phase2 we focus in on those strata and sample

them at high β. Innovations like dynamic radii and probabilistic strata window func-

tions addresses the high variability of the energy landscape and the density of maps

in space. As a result, this method produces electoral outcome distributions some-
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what consistent with previous methods and additionally detects atypical partisan

advantage in the North Carolina 2012 and 2016 enacted maps. While the resulting

distributions appear to require tuning, the application of Stratified Sampling to this

domain shows great promise.
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Appendix
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Figure A.1: Here we first show how high dimensionality affects the volume of a
unit sphere in bounded space. In the first panel it is clear that as dimensionality
climbs the percentage of volume contained by the unit sphere rapidly decreases. The
panels on the right show how the volume contained by a sphere scales with radius in
space defined by ρ in R26. Our default radius size of 0.1 would require approximately
1040 different spherical strata to cover the entirety of the state space. This is okay
because our goal is not to cover all of state space but rather to collect a representative
sample of all compliant maps, which exist in a relatively small volume of space
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Figure A.2: Here we reduce ρ in R26 to R2 using principle component analysis
(PCA) and plot them on the x and z axes and plot step delta energy on the y axis.
This provides a 3D image of the MCMC process stepping through space following
the energy gradient towards states with lower energy. The three different chains
represent three different processors walking independently through state space. They
each originate at the same start point (the 2016 judges map) and quickly diverge
as they randomly walk. This divergence is characteristic of walking through high
dimensional space. The walk illustrated is not bounded by any strata and occurs at
constant temperature.
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Figure A.3: Here we plot the latitude and longitude of the 13 districts for each
stratum centroid. The variability of these points suggests mixing of maps and suf-
ficient difference between strata. The mixing plot on the right was created by a
phase 1 run at a Beta “ 0.1. The mixing plot on the left was created at a hotter
temperature by a phase 1 run at a Beta “ 0.01. The strata centroids created by the
hotter phase 1 display better mixing and more heterogeneous strata. This supports
our decision to run phase 1 at a hotter temperature with a Beta “ 0.01

33



Figure A.4: These violin plots show the same data as 4.1 but in greater detail.
The distributions show a bit of irregularity for several of the ordered districts. This
is a signal that better mixing must occur and that this method may be oversampling
some regions of space at this time.
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