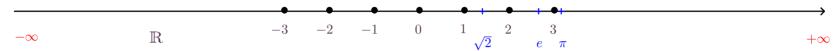


• Calculus is the study of *continuous* change, based upon the fundamental concepts of:

Real numbers \mathbb{R} Functions $f: D \to C$ Function limits $\lim_{x \to c} f(x)$

• Real numbers measure continuous quantities and are graphically represented by the real axis

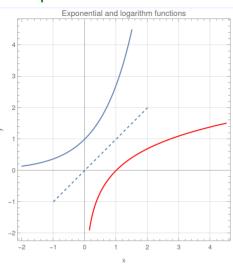


- Function f associates to input x from D (domain) a single output y from C (codomain) y = f(x) states that y is the single output of the function f for given input x f is one-to-one if output y is produced by a single input x, in which case $x = f^{-1}(y)$ $f^{-1}: C \to D$ is the inverse function of f. Example: $f: \mathbb{R} \to [0, \infty), f(x) = e^x, f^{-1}(x) = \ln(x)$ f(c) is the value of the function at a single point c
- The limit $\lim_{x\to c} f(x)$ describes the function f at an infinity of points near to c. Intuitive definition: $L = \lim_{x\to c} f(x)$ means that f(x) gets closer to L as x gets closer to c Formal definition: For any $\varepsilon > 0$ there exists a $\delta(\varepsilon)$ such that from $|x-c| < \delta(\varepsilon)$ it follows that $|f(x)-L| < \varepsilon$.

- A sentence is a complete unit of thought, and contains a subject, a verb, perhaps an object Sentences: Jane read a book. Eagles fly. Pandora opened the box. Have you eaten lunch? Not sentences: Jane. Flew. Box. Lunch.
- Subjects are often nouns, either singular or plural: The boy ran. The boys ran.
- Mathematics statements are similar to English sentences, in that there must be a subject and a verb, perhaps an object. Also, and most importantly, mathematics statements must be either true (T) or false (F). Math statements: Roses are flowers (T). All roses are red (F). 1/2 = 2/4 (T). Not math statements: 1/2. =. What is x? f'(x).
- Math statement subjects refer to a single entity (constants) or multiple entities (variables): $1 \cdot 0 = 0$ (T), Four is even (T). 1=2 (F). Any number times zero equals zero. $\forall x, x \cdot 0 = 0$.
- Some mathematics verbs: = is equal to $|\Rightarrow$ implies $|\Leftrightarrow$ is equivalent to $|\in$ is in set Examples: $x^2=1\Rightarrow x=-1$ or x=1. " x^2 equals 1 implies x equal to 1 or x equal to -1" a=b=c. "a is equal to b which is equal to c"
- Always form complete mathematical statements that can be determined to be true or false.

Functions: Review

Exponential functions



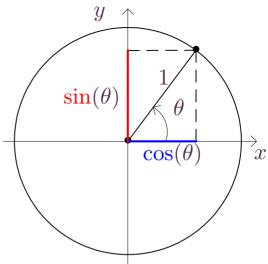
$$e^{\ln(x)} = x \qquad \ln e^x = x$$

$$e^x e^y = e^{x+y} \quad \ln(xy) = \ln(x) + \ln(y)$$

$$e^{xy} = (e^x)^y \quad \ln(x^y) = y \ln(x)$$

$$e^0 = 1$$
 $e \cong 2.72$ $\ln(1) = 0$ $\ln(e) = 1$

Trigonometric functions



$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \quad \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \\
 \sec(\theta) = \frac{1}{\cos(\theta)} \quad \csc(\theta) = \frac{1}{\sin(\theta)} \\
 \pi \cong 3.14 \quad 30^{\circ} \leftrightarrow \frac{\pi}{6} \quad 45^{\circ} \leftrightarrow \frac{\pi}{4} \quad 60^{\circ} \leftrightarrow \frac{\pi}{3}$$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \sin(0) = 0 & \sin(\pi/6) = 1/2 & \sin(\pi/4) = \sqrt{2}/2 & \sin(\pi/3) = \sqrt{3}/2 & \sin(\pi/2) = 1\\ \hline \cos(0) = 1 & \cos(\pi/6) = \sqrt{3}/2 & \cos(\pi/4) = \sqrt{2}/2 & \cos(\pi/3) = 1/2 & \cos(\pi/2) = 0\\ \hline \end{array}$$

Polynomials: $p(t) = a_0 + a_1 t + \dots + a_n t^n$. Rational functions $r(t) = \frac{p(t)}{q(t)}$, p, q polynomials

Limit from left	$x \to c, x < c$	$\lim_{x \to c^{-}} f(x) = L_{-}$
Limit from right	$x \to c, x > c$	$\lim_{x \to c^+} f(x) = L_+$

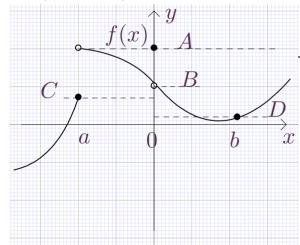
$$\lim_{x \to c} f(x) = L \Leftrightarrow L_{-} = L_{+} = L$$

If $\lim_{x\to c} f(x) = L$, $\lim_{x\to c} g(x) = M$, $a \in \mathbb{R}$ constant, $n \in \mathbb{N}$ a constant, $n \neq 0$, then

$$\begin{vmatrix} \lim_{x \to c} (f(x) + g(x)) = L + M & \lim_{x \to c} (f(x)g(x)) = LM & \lim_{x \to c} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M} (M \neq 0) \\ \lim_{x \to c} (af(x)) = aL & \lim_{x \to c} (f(x))^n = L^n & \lim_{x \to c} (f(x))^{1/n} = L^{1/n} (f(x) > 0) \end{vmatrix}$$

Limits allow defintion of continuity: $f: D \to C$ continuous at c if $\lim_{x \to c} f(x) = f(c)$

Graphical representations



Is f	continuous?
$\lim_{x \to a^{-}} f(x) = C$	No.
$x \rightarrow a^-$	3.7
$\lim_{x \to a^+} f(x) = A$	No.
$x \rightarrow a^+$	
$\lim_{x \to 0} f(x) = B$	No. $f(0) = A$
$x \rightarrow 0$	
$\lim_{x \to b} f(x) = D$	Yes.
$x \rightarrow 0$	

Limit computation

- Direct substitution $\lim_{x\to 1} x^2 = 1$
- Algebra identities $\lim_{x \to 1} \frac{x^2 - 1}{x + 1} = \lim_{x \to 1} (x - 1) = 0$

$$\lim_{x \to \infty} \frac{x^2 + 1}{2x^2 + x} = \lim_{x \to 1} \frac{1 + \frac{1}{x^2}}{2 + \frac{1}{x}} = \frac{1}{2}$$

l'Hôpital (use derivatives)

Limits allow evaluation of a ratio of two infinitesimal quantities \rightarrow the derivative. Example: s(t) distance as a function of time, v(t) = s'(t) is the instantaneous velocity Notations: $y'(x) = \frac{dy}{dx}(x) = \frac{d}{dx}y(x)$ values of y' at x, y' is the derivative of function y.

 $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \left| f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{0} \right| v(t) = \frac{\mathrm{d}s}{\mathrm{d}t}(t) \left| \frac{s \text{ dependent var.}}{t \text{ independent var.}} \right|$

Derivative rules for: addition, product, quotient, composition (the chain rule)

$$| (f+g)' = f' + g' | (fg)' = f'g + fg' | (\frac{f}{g})' = \frac{f'g - fg'}{g^2} | h(x) = f(g(x)), u = g(x) | h'(x) = f'(u)g'(x) |$$

Derivatives table (to be memorized), $a \in \mathbb{R}$, constant, $b \in \mathbb{R}$ a positive constant, b > 0

f(x)	a	x^a	e^x	b^x	$\ln x$	$\log_b x$	$\sin(x)$	$\cos(x)$	$\tan(x)$	$\cot(x)$
f'(x)	0	ax^{a-1}	e^x	$b^x \ln(b)$	$\frac{1}{x}$	$\frac{1}{x \ln b}$	$\cos(x)$	$-\sin(x)$	$\sec^2(x)$	$-\csc^2(x)$

1	f(x)	$\sin^{-1}(x)$	$\cos^{-1}(x)$	$\tan^{-1}(x)$	$\cot^{-1}(x)$
	f'(x)	$\frac{1}{\sqrt{1-x^2}}$	$-\frac{1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$	$-\frac{1}{1+x^2}$

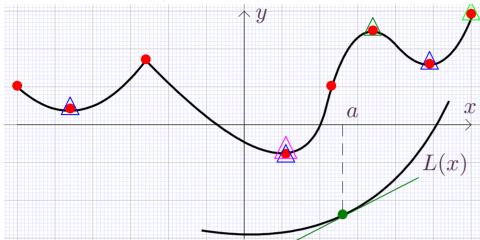
Derivative techniques, y(x), y dep. var., x ind. var.

Implicit differentiation: $e^y+x^2=0 \quad e^yy'+2x=0$ Log differentiation: $y(x)=(x-1)^{2/3}x^{1/5}$

$$\ln y = \frac{2}{3}\ln(x-1) + \frac{1}{5}\ln(x), \quad \frac{y'}{y} = \frac{2}{3(x-1)} + \frac{1}{5x}$$

Function extrema (minimum/maximum) $f:[a,b] \to \mathbb{R}$

Critical point c: either f'(c) = 0 or f' does not exist at c



Critical points. Local min (f''>0). Local max (f''<0). Inflection point (f''=0,f')changes sign). Absolute min (at a local min). Absolute max (at a critical point that is not a local max).

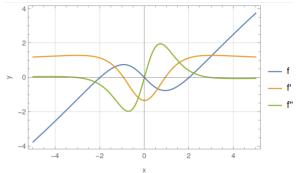
Linear approximation. Near point $(a, y(a)), y(x) \cong L(x),$

$$L(x) = y'(a)(x-a) + y(a)$$
. $y(x+h) \cong L(x+h)$

Differentials. $y = f(x) \Rightarrow dy = f'(x) dx$

Small increment. $y(x) - y(a) \cong f'(a) (x - a)$

Related rates. 1) Define notation. Respect problem notation. 2) Identify independent/dependent variable. 3) Carry out calculus operations, typically: find the critical points of dependent variable.



x	$-\infty$	-2	-0.93	0	0.93	2	∞
f	$-\infty$	0		0		0	∞
f'	$-\infty$ +	+	0	_	0	+	+
	×	7				7	7
$f^{\prime\prime}$	0	_	_	0	+	+	0
					$\overline{}$	$\overline{}$	

Root. Critical point. Inflection point. Increasing. Decreasing. Concave up, down.

Limit evaluation (l'Hôpital)

If $\lim_{x\to c} f(x) = 0$, $\lim_{x\to c} g(x) = 0$, f', g' exist $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$ "0/0" indeterminancy

$$\frac{\infty}{\infty} \to \frac{1/\infty}{1/\infty} \Leftrightarrow \frac{0}{0}, 0 \cdot \infty \to \frac{0}{1/\infty} \Leftrightarrow \frac{0}{0}, \\ \infty - \infty \to \infty \left(\frac{\infty}{20} - 1\right) \Leftrightarrow 0/0$$

Antiderivative. F(x) antiderivative of f(x).

$$F(x) = \int f(x) dx + C$$
, $F'(x) = f(x)$.

Integrand. Integration variable. Constant.

Evaluate $\int f(x) dx$ by reading differentiation table in reverse

f(x)	ax^{a-1}	e^x	$\frac{1}{x}$	$\cos(x)$	$-\sin(x)$	$\sec^2(x)$
$\int f(x) \mathrm{d}x$	x^a	e^x	$\ln x$	$\sin(x)$	$\cos(x)$	tan(x)

Definite integral. $\int_a^b f(x) dx =$ area for with $a \le x \le b$

from y = f(x) to y = 0.

$$\int_{a}^{a} f(x) dx = 0 \qquad \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

$$f(x) = f(-x) \Rightarrow \qquad \int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

$$f(x) = -f(x) \Rightarrow \qquad \int_{-a}^{a} f(x) dx = 0$$

$$a \leqslant c \leqslant b \Rightarrow \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

The definite integral is the limit of Riemann sums (area under curve evaluated by sum of rectangle areas)

$$\int_{a}^{b} f(x) dx = \lim_{\Delta \to 0} \sum_{k=1}^{n} f(x_{k}^{*})(x_{k} - x_{k-1})$$

$$a = x_0 < x_1 < \dots < x_k < \dots < x_n = b$$
. $x_{k-1} \le x_k^* \le x_k$

Area function. $A(x) = \int_a^x f(t) dt$ A(a) = 0 $A'(x) = \frac{d}{dx} \int_a^x f(t) dt = f(x)$ $F(x) = \int f(x) dx = A(x) + C$

Fundamental Theorem of Calculus $\int_a^b f(t) dt = A(b) - A(a)$

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Techniques.

- Substitution (reverse chain rule): $\int f(g(x)) \ g'(x) \ \mathrm{d}x = \int f(u) \ \mathrm{d}u$ with $u = g(x), \ \mathrm{d}u = g'(x) \ \mathrm{d}x$.
- Substitution for definite integrals $\int_a^b f(g(x)) \ g'(x) \ \mathrm{d}x = \int_{g(a)}^{g(b)} f(u) \ \mathrm{d}u$
- Variable integration limits $\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{g(x)} f(t) \, \mathrm{d}t = f(g(x)) \, g'(x)$ $\frac{\mathrm{d}}{\mathrm{d}x} \int_{a(x)}^{b} f(t) \, \mathrm{d}t = -f(g(x)) \, g'(x)$