Optimization

Thursday, October 27, 2022

1) Transform pur blem into a f(x) (univariate) (differentiable)

2) Look for local extrema of S(x) g(x)=0 Equation =>

say x, is a solution

if $f''(x_1) > 0 \Rightarrow x_1$ is a local minimum

if & (xi) <0 => x, is a local manimum

if $g''(x_i)=0 \Rightarrow x_i$ is an inflection point

4) Check against end-points of the function domain

For given, loxed perimeter what is the maximum enclosed area?

A(x,y) = xy (Bivaria te function)

P(x,y) = 2(x+y) P_0 : notation for foxed perimeter

Constaint:
$$P(x,y) = P_0 \Rightarrow 2(x+y) = P_0$$

Elimente a $y = \frac{P_0}{2} - x$ varioble, y
 $A(x,y) = x\left(\frac{P_0}{2} - x\right) = S(x)$

Shep 1. $S(x) = x\left(\frac{P_0}{2} - x\right)$ l'Agranad \Rightarrow differentiable

Step 2: $S'(x) = \frac{P_0}{2} - 2x = 0 \Rightarrow$
 $x = \frac{P_0}{4}$ is solution, pursible local extremum

Step 3: $S''(x) = -2$
 x_1 is a local maximum x_1

Step 4: Check end prins $S(x) = x\left(\frac{P_0}{2} - x\right)$ (Enclosed)

Somain $S: [0, \frac{P_0}{2}] \rightarrow [0, 3]$ men $S(x) = x$
 $S(x) = x(x)$

Somain $S: [0, \frac{P_0}{2}] \rightarrow [0, 3]$ men $S(x) = x$

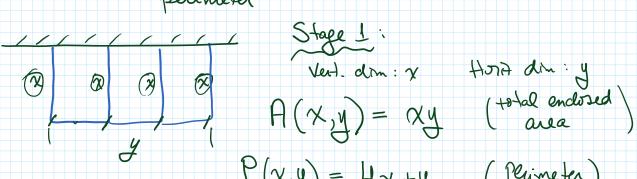
Maximum occurs a $S(x) = x$

Maximum is also global maximum.

Maximum occurs a $S(x) = x$

Maximum is $S(x) = x$
 $S($

Three enclosures of maximum total area, knowing that one side is already enclosed, for fixed plumeter



P(x,y) = 4x+y (Perimeter)

 P_o (fixed perimeter), Constraint. $P(x,y) = P_o$ $4x+y = P_o$

Use constant to eliminale y; y=Po-4x =>

A) $(x,y) = x(P_0 - 4x) = S(x)$ Polynomial constrained differentiable

2)
$$S'(x) = P_0 - 8x \Rightarrow S'(x) = 0 \Rightarrow x_1 = \frac{P_0}{8}$$

3)
$$S'(x) = -3$$
, <0 => x_1 local marximum $S(0) = 0$ $S(\frac{p_0}{4}) = 0$ => x_1 global marximum

Maximum occus at
$$\chi_1 = \frac{P_0}{8}$$

Maximum is $S(\chi_1) = \frac{P_0}{8}(P_0 - \frac{P_0}{2}) = \frac{P_0}{16}$.

Clark how A to conine at B

Start from A to arrive at B EN 3: in least amount of time if Swimming speed is known & walking speed is known. Solution Stage 1: Notation: A AC Cloud length: $L(\theta) = 2R \sin \frac{\theta}{2}$ walk swim $T(\theta) = \frac{2R}{s} \sin \frac{\theta}{2} + \frac{R}{w} (\overline{n} - \theta)$ three yeard time when we have the speed time. Stage 3: Local extrema $T'(\theta) = \frac{R}{S} \cos \frac{\theta}{2} - \frac{R}{W} = 0 \Rightarrow$ $cos \frac{y}{z} = \frac{y}{w} \Rightarrow 0, = cos \frac{y}{w}$ Stage 4: Local min on max $T''(0) = -\frac{R}{2s} \sin \frac{\theta}{2} < 0 \Rightarrow local maximum$ Stage 5: Check endpoints $\theta=0$ (walk only): $T(0)=\frac{i^2R}{w^2}$ 0=7 (Swim only): $T(7) = \frac{2R}{S}$ Conclusion: combining simming & walking always leads to lorger time if $T(0) < T(\overline{n}) \Rightarrow \frac{\pi R}{W} < \frac{2R}{S} \Rightarrow W > \frac{\pi}{2}S$ When walking speed is (I)=1.57 times swimming speed walking minimizes time il TIO 12 TIN). W= "S, walking/swimming the the

if $T(0) > T(\pi)$: $W < \frac{\pi}{2} S$, swimming takes less time