Solo
3.8. US
$$y_{1}^{2} = 4\eta_{X}$$
; $(1,2) = (5,13)$
 $\frac{d}{dx}$: $2yy_{1}^{2} = 4y_{2}$, $y_{1}^{2} = \frac{2}{21x} = \frac{1}{1x}$; $y_{1}^{2}(1) = 4$
3.8.17 $\sin y = 5x^{1} - 5$; $(1,1) = (x_{0}, y_{0})$
 $\frac{d}{dx}$: $(2xy_{0})y_{1}^{2} = 20x^{2} \Rightarrow y_{1}^{2} = \frac{20x^{3}}{coyy} = \frac{20x^{3}}{(1 - 5x^{1}y)} = \frac{20x^{2}}{(1 - 25(x^{2} - x)^{2})}$
A1 $(x_{0}, y_{0}) = (1, \overline{u})$ $y_{1}^{1} = \frac{20 \cdot 1}{coyT} = -20$
3.8.10. $4x - 2 \cdot y_{1}^{2} = 0;$ $(4, 1)$
 $\frac{d}{dx}$: $\frac{1}{2(x} - 2 \cdot \frac{1}{2}y_{1}^{2} = 0 = 3$ $y_{1}^{2} = \frac{1}{2}\sqrt{\frac{3}{2}}$
A1 $(4, 1)$ $y_{1}^{2} = \frac{1}{2}\sqrt{\frac{4}{1}} = A$
3.8.17. $\sin y_{1} + 5x = y_{2}^{2}$; $(0, 0) = (x_{0}, y_{0})$
 (y_{1}, y_{0}) , $\sin 0 + 5 \cdot 0 = 0$ $\sqrt{1}$
Tayont love: $y - y_{0} = m \cdot (x - x_{0})$ $m = y_{1}^{1}(x_{0})$
 $\frac{d}{dx}$: $(co)y_{1}y_{1}^{2} + 5 = 2yy_{1}^{2} \Rightarrow y_{1}^{2} = \frac{5}{2y - coy}$ \Rightarrow
At $(0, 0)$ $y_{1}^{1}(0) = \frac{5}{20 - 1} = -5$
Tayont love $y = -5x$
3.8.46. $x^{3} + y^{3} = 2xy_{1};$ $(A, 1) = (x_{0}, y_{0})$
 $\sqrt{20xy_{1}(1,1)}$ samples g_{1} : $A + 4 = 2 \cdot 11 \sqrt{2}$
 $\frac{d}{4x}$. $3(x^{2} + y_{1}^{2}) = 2(y + xy_{1}^{2}) \Rightarrow$
 $(3y_{1}^{2} - 2x)y_{1}^{1} = 2y_{1} - 3x^{2} \Rightarrow y_{1}^{2} = \frac{2y - 3x^{2}}{3y_{1}^{2} - 2x}$
A4 $(1, 1)$ $y_{1}^{1}(1) = \frac{2 - 3}{3 - 2} = -3 = m$

Tangah line
$$y - 1 = m(x - 1) = y - 1 = 1 - x = 3$$

 $x + y = 2$.
3.9.36. $y = \ln(x^{3} - 1)^{m} = \pi \ln(x^{3} + 1)$
Composite diff. Nule $y(x) = \int (x)g(x) - \int (x)$

1