FINAL EXAMINATION

Solve the following problems (5 course points each). Present a brief motivation of your method of solution. Problems 9 and 10 are optional; attempt them if you wish to improve your midterm examination score.

1. Form the matrix product corresponding to the following linear combinations

$$b_1 = x_1 a_1 + x_2 a_2 + \dots + x_n a_n,$$

 $b_2 = y_1 a_1 + y_2 a_2 + \dots + y_n a_n,$
 $b_3 = z_1 a_1 + z_2 a_2 + \dots + z_n a_n.$

Specify all matrix dimensions and column vectors.

Solution. Consider $a_1 \in \mathbb{R}^m$. Consistency of vector addition then implies $a_2, ..., a_n, b_1, b_2, b_3 \in \mathbb{R}^m$. Form

$$B = [b_1 \ b_2 \ b_3] = AC \in \mathbb{R}^{m \times p}, p = 3.$$

The vectors entering into the linear combinations are

$$A = [a_1 \ a_2 \ \dots \ a_n] \in \mathbb{R}^{m \times n}.$$

The scaling coefficients of the three linear combinations are

$$C = [c_1 \ c_2 \ c_3] = \begin{bmatrix} x_1 \ y_1 \ z_2 \ \vdots \ \vdots \ \vdots \ x_n \ y_n \ z_n \end{bmatrix} \in \mathbb{R}^{n \times p}, p = 3.$$

2. For $A \in \mathbb{R}^{m \times m}$ let b = Ax and $y \neq 0$ be a solution of the linear system $A^Ty = 0$. Compute the angle between b and y.

Solution. From b = Ax deduce $b \in C(A)$. From $A^Ty = 0$, deduce that $y \in N(A^T)$. The FTLA states $C(A) \perp N(A^T)$, hence $b \perp y$, and the angle between the two vectors is $\theta = \pi/2$ (orthogonal).

3. With $Q \in \mathbb{R}^{m \times m}$ known to be orthogonal, carry out the following block matrix multiplication. Identify dimensions of all blocks, and the blocks and the dimensions of the resulting C matrix

$$C = \left[egin{array}{cc} Q & I \\ 0 & Q \end{array}
ight] \left[egin{array}{cc} A & I \\ 0 & A \end{array}
ight] \left[egin{array}{cc} Q & I \\ 0 & Q \end{array}
ight]^T.$$

Solution. Consistency of multiplication requires $I, 0 \in \mathbb{R}^{m \times m}$, thereby leading to $C \in \mathbb{R}^{2m \times 2m}$. Apply "row-over-columns" for matrix blocks, noting that $I^T = I$, $0^T = 0$, $QQ^T = I$

$$\boldsymbol{C} = \left[\begin{array}{cc} \boldsymbol{Q} & \boldsymbol{I} \\ \boldsymbol{0} & \boldsymbol{Q} \end{array} \right] \left[\begin{array}{cc} \boldsymbol{A} & \boldsymbol{I} \\ \boldsymbol{0} & \boldsymbol{A} \end{array} \right] \left[\begin{array}{cc} \boldsymbol{Q}^T & \boldsymbol{0} \\ \boldsymbol{I} & \boldsymbol{Q}^T \end{array} \right] = \left[\begin{array}{cc} \boldsymbol{Q} & \boldsymbol{I} \\ \boldsymbol{0} & \boldsymbol{Q} \end{array} \right] \left[\begin{array}{cc} \boldsymbol{A} \boldsymbol{Q}^T + \boldsymbol{I} & \boldsymbol{Q}^T \\ \boldsymbol{A} & \boldsymbol{A} \boldsymbol{Q}^T \end{array} \right] = \left[\begin{array}{cc} \boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^T + \boldsymbol{Q} + \boldsymbol{A} & \boldsymbol{I} + \boldsymbol{A} \boldsymbol{Q}^T \\ \boldsymbol{Q} \boldsymbol{A} & \boldsymbol{Q} \boldsymbol{A} \boldsymbol{Q}^T \end{array} \right].$$

4. Compute $\boldsymbol{c} = \boldsymbol{A}^T \boldsymbol{b}$ and the projection of \boldsymbol{b} onto $C(\boldsymbol{A})$ for

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -1 & 1 \\ -1 & 2 \\ -4 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}.$$

Solution. Apply "row-over-columns" rule to obtain

$$\boldsymbol{c} = \begin{bmatrix} 2 & 3 \\ -1 & 1 \\ -1 & 2 \\ -4 & 0 \end{bmatrix}^T \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -1 & -4 \\ 3 & 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The above implies $b \in N(\mathbf{A}^T)$, and by the FTLA the projection of b onto $C(\mathbf{A})$ is the zero vector.

5. Find the LU decomposition of

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 5 & 5 \\ 4 & 9 & 15 \end{array} \right].$$

Solution. Carry out reduction to upper triangular form, noting multipliers used in the process

$$\boldsymbol{L}_{1}\boldsymbol{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 5 \\ 4 & 9 & 15 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ 0 & 5 & 11 \end{bmatrix}.$$

$$L_2L_1A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5/3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ 0 & 5 & 11 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ 0 & 0 & 6 \end{bmatrix} = U.$$

Find $\mathbf{A} = \mathbf{L}_1^{-1} \mathbf{L}_2^{-1} \mathbf{U} = \mathbf{L} \mathbf{U}$. Compute

$$\boldsymbol{L} = \boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5/3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 5/3 & 1 \end{bmatrix}.$$

Verify

$$\boldsymbol{L}\boldsymbol{U} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 5/3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 3 \\ 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 5 \\ 4 & 9 & 15 \end{bmatrix}. \checkmark$$

6. State the eigenvalues and eigenvectors of C = BA, A, $B \in \mathbb{R}^{2 \times 2}$, with C the matrix describing: (a) rotation by $\theta = \pi/2$ (A matrix) followed by reflection across the x_1 axis (B matrix).

Solution. Let $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{q}$, $\boldsymbol{z} = \boldsymbol{B}\boldsymbol{y} = \boldsymbol{C}\boldsymbol{q}$. From sketch below, note that $\boldsymbol{q}_1 = [1 \ 1]^T$ rotated by $\pi/2$ becomes $\boldsymbol{y}_1 = [1 \ 1]^T$, which when reflected across the horizontal axis is again $\boldsymbol{q}_1 = [1 \ -1]^T$, thus an eigenvector with associated eigenvalue $\lambda_1 = 1$. Similarly, vector $\boldsymbol{q}_2 = [1 \ 1]^T$ rotated by $\pi/2$ becomes $\boldsymbol{y}_2 = [-1 \ 1]^T$, which when reflected across the horizontal axis is $[-1 \ -1]^T = -\boldsymbol{q}_2$, thus an eigenvector with eigenvalue $\lambda_2 = -1$.

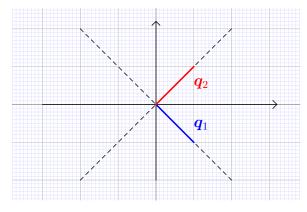


Figure 1.

7. Compute the eigendecomposition of

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right].$$

Solution. The characteristic polynomial is

$$p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 2),$$

with resulting eigenvalues $\lambda_1 = 0$, $\lambda_2 = 2$. For $\lambda_1 = 0$ perform row reduction to find eigenvector \boldsymbol{x}_1

$$oldsymbol{A} - \lambda_1 oldsymbol{I} = \left[egin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right] \sim \left[egin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right] \Rightarrow oldsymbol{x}_1 = \left[egin{array}{cc} 1 \\ -1 \end{array} \right], oldsymbol{q}_1 = oldsymbol{x}_1 / \|oldsymbol{x}_1\| = rac{1}{\sqrt{2}} \left[egin{array}{cc} 1 \\ -1 \end{array} \right].$$

Similarly, for $\lambda_2 = 2$

$$oldsymbol{A} - \lambda_2 oldsymbol{I} = \left[egin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}
ight] \sim \left[egin{array}{cc} -1 & 1 \\ 0 & 0 \end{array}
ight] \Rightarrow oldsymbol{x}_2 = \left[egin{array}{cc} 1 \\ 1 \end{array}
ight], oldsymbol{q}_2 = oldsymbol{x}_2 / \|oldsymbol{x}_2\| = rac{1}{\sqrt{2}} \left[egin{array}{cc} 1 \\ 1 \end{array}
ight].$$

Since $\mathbf{A} = \mathbf{A}^T$, the eigendecomposition exists and is orthogonal

$$oldsymbol{A} = oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^T = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 & 1 \\ -1 & 1 \end{bmatrix} egin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} rac{1}{\sqrt{2}} egin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

8. Find the SVD of

$$\mathbf{A} = \left[\begin{array}{cc} 4 & 0 \\ 4 & 0 \end{array} \right].$$

Solution. Recall SVD $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$, with $\mathbf{A}, \Sigma \in \mathbb{R}^{m \times n}$, $\mathbf{U} \in \mathbb{R}^{m \times m}$ orthogonal, $\mathbf{V} \in \mathbb{R}^{n \times n}$ orthogonal. For this problem m = n = 2. Further recall $\mathbf{U} = [\mathbf{u}_1 \ \dots \ \mathbf{u}_r \ \mathbf{u}_{r+1} \ \dots \ \mathbf{u}_m], \mathbf{V} = [\mathbf{v}_1 \ \dots \ \mathbf{v}_r \ \mathbf{v}_{r+1} \ \dots \ \mathbf{v}_n]$. The matrix \mathbf{A} has rank r = 1, and \mathbf{u}_1 can be taken as

Since U is orthogonal take

$$u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.
 $u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$,

to obtain

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$

Take V = I to obtain

$$AV = A = U\Sigma \Rightarrow \begin{bmatrix} 4 & 0 \\ 4 & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \sigma_1/\sqrt{2} & 0 \\ \sigma_1/\sqrt{2} & 0 \end{bmatrix}.$$

Deduce that $\sigma_1 = 4\sqrt{2}$, completing the SVD.

9. Form the matrices $A, B \in \mathbb{R}^{2 \times 2}$, C = BA, where C is the matrix describing: (a) rotation by $\theta = \pi/2$ (A matrix) followed by reflection across the x_1 axis (B matrix).

Solution. The matrices are

$$\boldsymbol{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \boldsymbol{C} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}.$$

10. Find bases for the four fundamental spaces of

$$\mathbf{A} = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & -1 & -1 & -4 \\ 3 & 1 & 2 & 0 \end{array} \right].$$

Solution. Note that $\mathbf{A} \in \mathbb{R}^{m \times n}$ with m = 3, n = 4. Carry out row reduction

$$\mathbf{A} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -5 & -7 & -12 \\ 0 & -5 & -7 & -12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -5 & -7 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

to find $r = \operatorname{rank}(\mathbf{A}) = 2$.

 $C(\mathbf{A})$: FTLA states dim $C(\mathbf{A}) = r = 2$. Take r = 2 linearly independent columns as the basis, e.g.,

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \right\}.$$

 $C(\mathbf{A}^T)$: FTLA states dim $C(\mathbf{A}^T) = r = 2$. Take r = 2 linearly independent rows as the basis, e.g.,

$$\left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-1\\-4 \end{bmatrix} \right\}.$$

 $N(\mathbf{A}^T)$: FTLA states dim $N(\mathbf{A}^T) = m - r = 1$. From row reduction of \mathbf{A}^T

$$\boldsymbol{A}^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -5 \\ 0 & -7 & -7 \\ 0 & -12 & -12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

consider system

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}.$$

Take $x_3 = \lambda$ as a free parameter to obtain

$$\begin{cases} x_1 + 2x_2 = -3\lambda \\ x_2 = -\lambda \end{cases}, x_1 = x_2 = -\lambda.$$

A basis vector for $N(\mathbf{A}^T)$ is therefore

$$\left\{ \left[\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right] \right\}.$$

Verify

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 1 \\ 3 & -1 & 2 \\ 4 & -4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \checkmark.$$

 $N(\mathbf{A})$: FTLA states dim $N(\mathbf{A}) = n - r = 2$. Continue above row reduction of \mathbf{A} to obtain reduced row echelon form

$$\mathbf{A} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -5 & -7 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 7/5 & 12/5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1/5 & -4/5 \\ 0 & 1 & 7/5 & 12/5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and form system

$$\begin{cases} 5x_1 + x_3 - 4x_4 = 0 \\ 5x_2 + 7x_3 + 12x_4 = 0 \end{cases}.$$

Consider $x_3 = \lambda$, $x_4 = \mu$ to be free parameters to obtain

$$\begin{cases} x_1 = -(\lambda - 4\mu)/5 \\ x_2 = -(7\lambda + 12\mu)/5 \end{cases}$$
 For $x_4 = \mu = 0$ obtain
$$x_1 = -\frac{1}{5}\lambda, x_2 = -\frac{7}{5}\lambda, x_3 = \lambda, x_4 = 0,$$
 For $x_3 = \lambda = 0$ obtain
$$x_1 = \frac{4}{5}\mu, x_2 = -\frac{12}{5}\mu, x_3 = 0, x_4 = \mu.$$

Deduce that a basis set for $N(\mathbf{A})$ is

$$\left\{ \begin{bmatrix} -1\\ -7\\ 5\\ 0 \end{bmatrix}, \begin{bmatrix} 4\\ -12\\ 0\\ 5 \end{bmatrix} \right\}.$$

Verify

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & -1 & -1 & -4 \\ 3 & 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ -7 & -12 \\ 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \checkmark$$