Homework 10

This assignment is a worksheet of exercises intended as preparation for the Final Examination. You should:

- 1. Review Lessons 1 to $12\,$
- 2. Set aside 60 minutes to solve these exercises. Each exercise is meant to be solved within 3 minutes. If you cannot find a solution within 3 minutes, skip to the next one.
- 3. Check your answers in Matlab. Revisit theory for skipped or incorrectly answered exercise.
- 4. Turn in a PDF with your brief handwritten answers that specify your motivation, approach, calculations, answer. It is good practice to start all answers by briefly recounting the applicable definitions.

1 Vector operations

- 1. Find the linear combination of vectors $\boldsymbol{u} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$, $\boldsymbol{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ with scaling coefficients $\alpha = 2, \beta = 1$.
- 2. Express the above linear combination \boldsymbol{b} as a matrix-vector product $\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x}$. Define \boldsymbol{x} and the column vectors of $\boldsymbol{A} = [\begin{array}{cc} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array}]$.
- 3. Consider $\boldsymbol{u} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, $\boldsymbol{v} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Compute the 2-norms of $\boldsymbol{u}, \boldsymbol{v}$. Determine the angle between $\boldsymbol{u}, \boldsymbol{v}$.
- 4. Consider $\boldsymbol{u} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, $\boldsymbol{v} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Define vector \boldsymbol{w} such that $\boldsymbol{v} + \boldsymbol{w}$ is orthogonal to \boldsymbol{u} . Write the equation to determine \boldsymbol{w} , and then compute \boldsymbol{w} .
- 5. Determine $\boldsymbol{q}_1, \boldsymbol{q}_2$ to be of unit norm and in the direction of vectors $\boldsymbol{u}, \boldsymbol{w}$ from Ex. 4. Form $\hat{\boldsymbol{Q}} = [\boldsymbol{q}_1 \ \boldsymbol{q}_2]$. Compute $\hat{\boldsymbol{Q}} \hat{\boldsymbol{Q}}^T$ and $\hat{\boldsymbol{Q}}^T \hat{\boldsymbol{Q}}$.
- 6. Determine vector \boldsymbol{q}_3 orthonormal to vectors $\boldsymbol{q}_1, \boldsymbol{q}_2$ from Ex. 5.
- 7. Establish whether vectors $\boldsymbol{u} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$, $\boldsymbol{v} = \begin{bmatrix} -3 & 1 & -2 \end{bmatrix}^T$, $\boldsymbol{w} = \begin{bmatrix} 2 & -3 & 1 \end{bmatrix}^T$ all lie in the same plane within \mathbb{R}^3 .
- 8. Determine \boldsymbol{v} the reflection of vector $\boldsymbol{u} = \begin{bmatrix} 1 & \sqrt{3} \end{bmatrix}^T$ across vector $\boldsymbol{w} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.
- 9. Determine \boldsymbol{w} the rotation of vector $\boldsymbol{u} = \begin{bmatrix} 1 & \sqrt{3} \end{bmatrix}^T$ by angle $\theta = -\pi/6$.
- 10. Compute $\boldsymbol{z} = \boldsymbol{v} \boldsymbol{w}$ with $\boldsymbol{v}, \boldsymbol{w}$ from Ex. 8,9.

2 Matrix operations

- 1. Find two linear combinations of vectors $\boldsymbol{u} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$, $\boldsymbol{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ first with scaling coefficients $\alpha = 2$, $\beta = 1$, and then with scaling coefficients $\alpha = 1$, $\beta = 2$.
- 2. Express the above linear combinations B as a matrix-matrix product B = AX. Define the column vectors of A, X.
- 3. Consider $A, B \in \mathbb{R}^{m \times m}$. Which of the following matrices are always equal to $C = (A B)^2$?

a)
$$A^2 - B^2$$

- b) $(B A)^2$
- c) $A^2 2AB + B^2$
- d) $\boldsymbol{A}(\boldsymbol{A}-\boldsymbol{B})-\boldsymbol{B}(\boldsymbol{B}-\boldsymbol{A})$
- e) $A^2 AB BA + B^2$
- 4. Find the inverse of

$$\boldsymbol{A} = \left[\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right] \! .$$

5. Verify that the inverse of $\boldsymbol{A} = \boldsymbol{I} - \boldsymbol{u} \boldsymbol{v}^T$ is

$$A^{-1} = I + \frac{uv^T}{1 - v^Tu}$$

when $\boldsymbol{v}^T \boldsymbol{u} \neq 1$. 6. Find $\boldsymbol{A}^T, \boldsymbol{A}^{-1}, (\boldsymbol{A}^{-1})^T, (\boldsymbol{A}^T)^{-1}$ for

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & 0 \\ 9 & 3 \end{array} \right]$$

7. Describe within \mathbb{R}^3 the geometry of the column spaces of matrices

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}, \boldsymbol{C} = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 0 \end{bmatrix}.$$

8. The vector subspaces of \mathbb{R}^2 are lines, \mathbb{R}^2 itself and $Z = \{ \begin{bmatrix} 0 & 0 \end{bmatrix}^T \}$. What are the vector subspaces of \mathbb{R}^3 ? 9. Reduce the following matrices to row echelon form

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 2 & 4 & 6 \\ 1 & 2 & 3 & 6 & 9 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 4 & 4 \\ 0 & 8 & 8 \end{bmatrix}.$$
$$\boldsymbol{A} = \begin{bmatrix} -1 & 3 & 5 \\ -2 & 6 & 10 \end{bmatrix}.$$

10. Determine the null space of