Homework 11

This assignment is a worksheet of exercises intended as preparation for the Final Examination. You should:

- 1. Review Lessons 13 to 24 $\,$
- 2. Set aside 60 minutes to solve these exercises. Each exercise is meant to be solved within 3 minutes. If you cannot find a solution within 3 minutes, skip to the next one.
- 3. Check your answers in Matlab. Revisit theory for skipped or incorrectly answered exercise.
- 4. Turn in a PDF with your brief handwritten answers that specify your motivation, approach, calculations, answer. It is good practice to start all answers by briefly recounting the applicable definitions.

1 Matrix factorization

- 1. State $P \in \mathbb{R}^{3 \times 3}$ that permutes rows (1,2,3) of $A \in \mathbb{R}^{3 \times 3}$ as rows (2,3,1) through the product PA.
- 2. Find the inverse of matrix \boldsymbol{P} from Ex. 1.
- 3. State $Q \in \mathbb{R}^{3 \times 3}$ that permutes columns (1,2,3) of $A \in \mathbb{R}^{3 \times 3}$ as columns (3,1,2) through the product AQ.
- 4. Find the inverse of marix Q from Ex. 3.
- 5. Find the LU factorization of

6. Find the LU factorization of

A =	1 1 1	$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{c} 1 \\ 3 \\ 6 \end{array}$].
A =	1 1 1	$\begin{array}{c} 1 \\ 2 \\ 2 \end{array}$	1 2 3].

- 7. Prove that permutation matrices $\boldsymbol{P}, \boldsymbol{Q}$ from Ex.1,3 are orthogonal matrices.
- 8. Find the QR factorization of

	0	5	6	٦	
A =	0	0	9		
	1	2	3		

9. Find the eigendecomposition of $\mathbf{R} \in \mathbb{R}^{2 \times 2}$, the matrix of reflection across the first bisector (the x = y line). 10. Find the SVD of $\mathbf{R} \in \mathbb{R}^{2 \times 2}$, the rotation by angle θ matrix.

2 Linear algebra problems

1. Find the coordinates of $\boldsymbol{b} = \begin{bmatrix} 6 & 15 & 24 \end{bmatrix}^T$ on the \mathbb{R}^3 basis vectors

$$\left\{ \left[\begin{array}{c} 1\\4\\7 \end{array}\right], \left[\begin{array}{c} 2\\5\\8 \end{array}\right], \left[\begin{array}{c} 3\\6\\9 \end{array}\right] \right\}.$$

2. Solve the least squares problem $\min_{\boldsymbol{x}} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|$ for

$$\boldsymbol{b} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \boldsymbol{A} = \begin{bmatrix} 3 & -5\\-11 & 21\\0 & 0 \end{bmatrix}.$$

3. Find the line passing closest to points $\mathcal{D} = \{(-2,3), (-1,1), (0,1), (1,3), (3,7)\}.$

4. Find an orthonormal basis for $C(\mathbf{A})$ where

$$\boldsymbol{A} = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$$

5. With \boldsymbol{A} from Ex. 4 solve the least squares problem $\min_{\boldsymbol{x}} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|$ where

$$\boldsymbol{b} = \begin{bmatrix} -4 \\ -3 \\ 3 \\ 0 \end{bmatrix}.$$

- 6. What is the best approximant $\boldsymbol{c} \in C(\boldsymbol{A})$ (\boldsymbol{A} from Ex. 4) of \boldsymbol{b} from Ex. 5?
- 7. Find the eigenvalues and eigenvectors of

$$\boldsymbol{A} = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right]$$

- 8. For \boldsymbol{A} from Ex. 7 find the eigenvalues and eigenvectors of \boldsymbol{A}^2 , \boldsymbol{A}^{-1} , $\boldsymbol{A} + 2\boldsymbol{I}$.
- 9. Is the following matrix diagonalizable?

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$
$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}.$$