- New concepts:
 - Vector space
 - Vector subspace
 - Span of a set of vectors
 - $-\,$ Linear dependence and independence

• Formalize linear combinations

Addition rules for	$\forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in V$
$a+b \in V$	Closure
a + (b + c) = (a + b) + c	Associativity
a+b=b+a	Commutativity
0+a=a	Zero vector
a + (-a) = 0	Additive inverse
Scaling rules for	$\forall \boldsymbol{a}, \boldsymbol{b} \in V$, $\forall x, y \in S$
$x \mathbf{a} \in V$	Closure
$x(\boldsymbol{a} + \boldsymbol{b}) = x\boldsymbol{a} + x\boldsymbol{b}$	Distributivity
$(x+y)\boldsymbol{a} = x\boldsymbol{a} + y\boldsymbol{a}$	Distributivity
$x(y\boldsymbol{a}) = (xy)\boldsymbol{a}$	Composition
$1 \boldsymbol{a} = \boldsymbol{a}$	Scalar identity

 Table 1.
 Vector space properties

• Example: $V = \mathbb{R}^m, S = \mathbb{R}$

• Consider projection in \mathbb{R}^2 onto the x_1 axis

$$\boldsymbol{P} = \boldsymbol{e}_1 \boldsymbol{e}_1^T = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \boldsymbol{P} \boldsymbol{x} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$$

- Let $V = \mathbb{R}^2$ and consider U be the set of all vectors in \mathbb{R}^2 with zero second component. Notice that $U \subset V$ and U is also a vector space, i.e., any linear combination of vectors in U stays within U
- In general if vectors in V form a vector space, $U \subset V$ and if for any $\alpha, \beta \in \mathbb{R}$, $\boldsymbol{u}, \boldsymbol{v} \in U$, $\alpha \boldsymbol{u} + \beta \boldsymbol{v} \in U$, then U is a vector subspace of V
- Example

$$V = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, x_1, x_2 \in \mathbb{R} \right\}, U = \left\{ \begin{bmatrix} x_1 \\ 0 \end{bmatrix}, x_1 \in \mathbb{R} \right\}$$

Note that vectors in \boldsymbol{U} still have two components, just like those in \boldsymbol{V}

Choose α = −β, u = v to set that αu + βv = αu − αu = 0 must be within the subspace, i.e., the zero element is always a member of a subspace

Definition. The span of vectors $a_1, a_2, ..., a_n \in V$, is the set of vectors reachable by linear combination

span{
$$\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_n$$
} = { $\boldsymbol{b} \in \mathcal{V} \mid \exists x_1, ..., x_n \in \mathcal{S}$ such that $\boldsymbol{b} = x_1 \boldsymbol{a}_1 + ... x_n \boldsymbol{a}_n$ }.

The notation used for set on the right hand side is read: "those vectors \boldsymbol{b} in \mathcal{V} with the property that there exist n scalars $x_1, ..., x_n$ to obtain \boldsymbol{b} by linear combination of $\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_n$.

• A linear combination is conveniently expressed as a matrix-vector product leading to a different formulation of the same concept

Definition. The column space (or range) of matrix $A \in \mathbb{R}^{m \times n}$ is the set of vectors reachable by linear combination of the matrix column vectors

 $C(\boldsymbol{A}) = \operatorname{range}(\boldsymbol{A}) = \{ \boldsymbol{b} \in \mathbb{R}^m | \exists \boldsymbol{x} \in \mathbb{R}^n \text{ such that } \boldsymbol{b} = \boldsymbol{A} \boldsymbol{x} \} \subseteq \mathbb{R}^m$

$$\boldsymbol{A} = (\boldsymbol{a}_1 \ \boldsymbol{a}_2 \ \boldsymbol{a}_3) = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

$$span\{a_1, a_2, a_3\} = span\{a_1, a_2\}$$

since $a_3 = a_1 + a_2 \Leftrightarrow a_1 + a_2 - a_3 = 0$. Introduce a concept to capture the idea that a vector can be expressed in terms of other vectors.

Definition. The vectors $a_1, a_2, ..., a_n \in V$, are linearly dependent if there exist n scalars, $x_1, ..., x_n \in S$, at least one of which is different from zero such that

$$x_1 \boldsymbol{a}_1 + \dots x_n \boldsymbol{a}_n = \boldsymbol{0}$$

Note that $\{0\}$, with $0 \in \mathcal{V}$ is a linearly dependent set of vectors since $1 \cdot 0 = 0$.

The converse of linear dependence is linear independence, a member of the set cannot be expressed as a non-trivial linear combination of the other vectors

Definition. The vectors $a_1, a_2, ..., a_n \in V$, are linearly independent if the only n scalars, $x_1, ..., x_n \in S$, that satisfy

$$x_1 \boldsymbol{a}_1 + \dots x_n \boldsymbol{a}_n = \boldsymbol{0}, \tag{1}$$

are $x_1 = 0$, $x_2 = 0$,..., $x_n = 0$.

The choice $x = (x_1 \dots x_n)^T = 0$ that always satisfies (1) is called a *trivial solution*. We can restate linear independence as (1) being satisfied *only* by the trivial solution.