- New concepts:
 - Span of a set of vectors, matrix column space
 - Matrix null space
 - Matrix row space
 - Matrix left null space
 - Vector space basis
 - Vector space sums

Definition. The span of vectors $a_1, a_2, ..., a_n \in V$, is the set of vectors reachable by linear combination

span{
$$\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_n$$
} = { $\boldsymbol{b} \in \mathcal{V} \mid \exists x_1, ..., x_n \in \mathcal{S}$ such that $\boldsymbol{b} = x_1 \boldsymbol{a}_1 + ... x_n \boldsymbol{a}_n$ }.

The notation used for set on the right hand side is read: "those vectors \boldsymbol{b} in \mathcal{V} with the property that there exist n scalars $x_1, ..., x_n$ to obtain \boldsymbol{b} by linear combination of $\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_n$.

• A linear combination is conveniently expressed as a matrix-vector product leading to a different formulation of the same concept

Definition. The column space (or range) of matrix $A \in \mathbb{R}^{m \times n}$ is the set of vectors reachable by linear combination of the matrix column vectors

 $C(\boldsymbol{A}) = \operatorname{range}(\boldsymbol{A}) = \{ \boldsymbol{b} \in \mathbb{R}^m | \exists \boldsymbol{x} \in \mathbb{R}^n \text{ such that } \boldsymbol{b} = \boldsymbol{A} \boldsymbol{x} \} \subseteq \mathbb{R}^m$

Introduce a characterization of the column vectors of a matrix related to linear dependence

Definition. The null space of a matrix $A \in \mathbb{R}^{m \times n}$ is the set

$$N(\mathbf{A}) = \operatorname{null}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0} \} \subseteq \mathbb{R}^n$$

• If $null(A) = \{0\}$ then the column vectors of A are linearly independent, since the only way to satisfy (?) is by the trivial solution x = 0

For example $A = [\begin{array}{ccc} a_1 & a_2 & a_3 \end{array}]$ below, $c(a_1 + a_2 - a_3) = 0$ for any scalar c, hence

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \Rightarrow C(\boldsymbol{A}) = \operatorname{span}\{\boldsymbol{a}_1, \boldsymbol{a}_2\}, N(\boldsymbol{A}) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$$

Recall definitions of column space, null space of $\boldsymbol{A} \in \mathbb{R}^{m imes n}$

$$C(\mathbf{A}) = \{ \mathbf{b} \in \mathbb{R}^m | \exists \mathbf{x} \in \mathbb{R}^n \text{ such that } \mathbf{b} = \mathbf{A}\mathbf{x} \} \subseteq \mathbb{R}^m$$
$$N(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0} \} \subseteq \mathbb{R}^n$$

Note that $C(\mathbf{A}) \subseteq \mathbb{R}^m$, $N(\mathbf{A}) \subseteq \mathbb{R}^n$ means that $C(\mathbf{A})$, $N(\mathbf{A})$ are subsets of \mathbb{R}^m , \mathbb{R}^n respectively. In fact, we can make a stronger statement, that they are vector subspaces

 $C(\mathbf{A}) \leq \mathbb{R}^m, N(\mathbf{A}) \leq \mathbb{R}^n$

Proof. Let $\boldsymbol{u}, \boldsymbol{v} \in C(\boldsymbol{A})$, $\alpha, \beta \in S$. By definiton of $C(\boldsymbol{A})$ there exist $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ such that $\boldsymbol{u} = \boldsymbol{A}\boldsymbol{x}$ and $\boldsymbol{v} = \boldsymbol{A}\boldsymbol{y}$. Using vector space properties

$$\alpha \boldsymbol{u} + \beta \boldsymbol{v} = \alpha \boldsymbol{A} \boldsymbol{x} + \beta \boldsymbol{A} \boldsymbol{y} = \boldsymbol{A} (\alpha \boldsymbol{x} + \beta \boldsymbol{y}),$$

hence $\alpha u + \beta v \in C(A)$ (it is obtained as the image through the linear mapping A of $\alpha x + \beta y$)

• Recall that if $\boldsymbol{u}^T \boldsymbol{v} = 0$, with $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^m$ then $\boldsymbol{u} \perp \boldsymbol{v}$ (orthogonal)

Proposition. If $u_1, u_2, ..., u_n \in \mathbb{R}^m$ are non-zero $(u_i \neq 0)$ and pairwise orthogonal, $u_i^T u_j = 0$ for $i \neq j$ then they form a linearly independent set of vectors.

Proof. Consider the equation equating the linear combination $c_1 u_1 + ... + c_n u_n$ to the zero vector

$$c_1 \boldsymbol{u}_1 + \ldots + c_n \boldsymbol{u}_n = \boldsymbol{0} \tag{1}$$

Multiply on the left by u_i^T and use orthogonality to obtain $c_i = 0$ for i = 1, ..., n. The only solution to (1) is $c_1 = c_2 = ... = c_n = 0$, hence $\{u_1, u_2, ..., u_n\}$ is a linearly independent set.

• For $A \in \mathbb{R}^{m \times n}$, seen as a linear mapping $A : \mathbb{R}^n \mapsto \mathbb{R}^m$, that given input vector $x \in \mathbb{R}^n$ returns output vector $b \in \mathbb{R}^m$, b = Ax, we have defined the vector space of possible outputs, the column space of A

$$C(\mathbf{A}) = \{ \mathbf{b} \in \mathbb{R}^m | \exists \mathbf{x} \in \mathbb{R}^n \text{ such that } \mathbf{b} = \mathbf{A}\mathbf{x} \} \subseteq \mathbb{R}^m$$

The transpose A^T ∈ ℝ^{n×m} can also be seen as a linear mapping. Given some input vector y ∈ ℝ^m the mapping returns the output vector c ∈ ℝⁿ, c = A^Ty. The set of possible outputs is the column space of A^T. Since columns of A^T are rows of A, we can define the row space of A as

$$R(\boldsymbol{A}) = C(\boldsymbol{A}^T) = \{ \boldsymbol{c} \in \mathbb{R}^n | \exists \boldsymbol{y} \in \mathbb{R}^m \text{ such that } \boldsymbol{c} = \boldsymbol{A}^T \boldsymbol{y} \} \subseteq \mathbb{R}^n$$

• Left null space, $N(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{R}^m | \mathbf{A}^T \mathbf{y} = 0 \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m not reachable by linear combination of columns of \mathbf{A}

Definition. A set of vectors $u_1, ..., u_n \in V$ is a basis for vector space V if:

- 1. $\boldsymbol{u}_1, ..., \boldsymbol{u}_n$ are linearly independent;
- 2. span $\{u_1, \ldots, u_n\} = \mathcal{V}$.

Definition. The number of vectors $u_1, ..., u_n \in V$ within a basis is the dimension of the vector space V.

Definition. Given two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$, the sum is the set $\mathcal{U} + \mathcal{V} = \{ u + v \mid u \in \mathcal{U}, v \in \mathcal{V} \}.$

Definition. Given two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$, the direct sum is the set $\mathcal{U} \oplus \mathcal{V} = \{u + v \mid \exists ! u \in \mathcal{U}, \exists ! v \in \mathcal{V}\}$. (unique decomposition)

Definition. Given two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$, the intersection is the set

$$\mathcal{U} \cap \mathcal{V} = \{ \boldsymbol{x} \, | \, \boldsymbol{x} \in \mathcal{U}, \, \boldsymbol{x} \in \mathcal{V} \}.$$

Definition. Two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$ are orthogonal subspaces, denoted $\mathcal{U} \perp \mathcal{V}$ if $\mathbf{u}^T \mathbf{v} = 0$ for any $\mathbf{u} \in \mathcal{U}, \mathbf{v} \in \mathcal{V}$.

Definition. Two vector subspaces $(\mathcal{U}, \mathcal{S}, +)$, $(\mathcal{V}, \mathcal{S}, +)$ of the space $(\mathcal{W}, \mathcal{S}, +)$ are orthogonal complements, denoted $\mathcal{U} = \mathcal{V}^{\perp}$, $\mathcal{V} = \mathcal{U}^{\perp}$ if they are orthogonal subspaces and $\mathcal{U} \cap \mathcal{V} = \{\mathbf{0}\}$, *i.e.*, the null vector is the only common element of both subspaces.