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• New concepts:

− Vector space sums

− FTLA

− FTLA step-by-step (question by question) proof

− Rank-nullity theorem

− Characterizing solutions to linear systems in terms of rank and nullity



Direct sum, intersection of vector spaces 2/13

Definition. Given two vector subspaces (U ,S ,+), (V ,S ,+) of the space (W ,S ,+), the sum
is the set U +V = {u+ v | u∈U ,v ∈V}.

Definition. Given two vector subspaces (U , S , +), (V , S , +) of the space (W , S , +), the
direct sum is the set U ⊕V = {u + v | ∃!u∈U ,∃!v ∈V}. (unique decomposition)

Definition. Given two vector subspaces (U , S , +), (V , S , +) of the space (W , S , +), the
intersection is the set

U ∩V = {x|x∈U ,x∈V}.

Definition. Two vector subspaces (U ,S ,+), (V ,S ,+) of the space (W ,S ,+) are orthogonal
subspaces, denoted U⊥V if uTv = 0 for any u∈U ,v ∈V.

Definition. Two vector subspaces (U ,S ,+), (V ,S ,+) of the space (W ,S ,+) are orthogonal

complements, denoted U =V⊥, V =U⊥ if they are orthogonal subspaces and U ∩V ={0}, i.e.,
the null vector is the only common element of both subspaces.



Recapitulation: The four fundamental subspaces for a linear mapping 3/13

• A matrix A∈R
m×n is a linear mapping from R

n to R
m, A:Rn→R

m

• The transpose AT ∈R
n×m is a linear mapping from R

m to R
n, AT :Rm→R

n

• To each matrix A∈R
m×n associate four fundamental subspaces:

1 Column space, C(A) = {b∈R
m| ∃x∈R

n such that b = Ax}⊆R
m, the part of Rm

reachable by linear combination of columns of A

2 Left null space, N(AT)= {y ∈R
m|AT y =0}⊆R

m, the part of Rm not reachable by
linear combination of columns of A

3 Row space, R(A) = C(AT) = {c∈R
n| ∃y ∈R

m such that c = AT y}⊆R
n, the part

of Rn reachable by linear combination of rows of A

4 Null space, N(A) = {x ∈R
n|Ax = 0} ⊆R

n, the part of Rn not reachable by linear
combination of rows of A



FTLA 4/13

Theorem. Given the linear mapping associated with matrix A∈R
m×n we have:

1. C(A) ⊕ N(AT) = R
m, the direct sum of the column space and left null space is the

codomain of the mapping

2. C(AT)⊕N(A)=R
n, the direct sum of the row space and null space is the domain of the

mapping

3. C(A)⊥N(AT) and C(A)∩N(AT)= {0}, the column space is orthogonal to the left null
space, and they are orthogonal complements of one another,

C(A)= N(AT)⊥, N(AT)= C(A)⊥ .

4. C(AT)⊥N(A) and C(AT)∩N(A) = {0}, the row space is orthogonal to the null space,
and they are orthogonal complements of one another,

C(AT)= N(A)⊥, N(A) = C(AT)⊥ .



Graphical representation of FTLA 5/13
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Proofs 6/13

• Understanding the FTLA is essential to applications

• Proofs of the FTLA help in:

− building the ability to recognize rigorous mathematical arguments as opposed to intuition

− gaining an appreciation of the interplay between construction of mathematical concepts
(formalized in a definition) and interaction between these concepts (propositions and
theorems).

• Recall: linear algebra seeks construction of complex objects, vectors b∈R
m through linear

combination of n column vectors organized into a matrix

A= [ a1 ... an ], b= T (x)= Ax, A∈R
m×n, x∈R

n scaling coefficients.

T :Rn→R
m a linear mapping from domain R

n to codomain R
m.

A proof of the FTLA is now presented as answers (first informal, and then rigorous) to a
series of natural questions arising from the initial goal:

1 What vectors can be obtained by the linear combination Ax?

2 Is there only one way to obtain a vector b by linear combination?

3 Is there a preferred way to describe vectors b= Ax?

4 Is there a preferred way to describe vectors y that satisfy Ay =0?

5 Is there anything different about organizing vectors into rows?



Q1: What vectors can be obtained by the linear combination Ax? 7/13

• Set of reachable vectors: defined by column space of A (range of mapping T )

C(A)= {b|∃x∈R
n, b= Ax}⊆R

m

• C(A) has structure, it is a vector subspace of Rm, C(A)≤R
m

Proof. ∀u, v ∈C(A) ⇒∃x, y ∈R
n such that u = Ax, v = Ay by definition of C(A).

Then u + v = Ax + Ay = A(x + y), hence u + v ∈C(A).

• ”Size” of a vector space has been characterized by the concept of dimension. Give a distinct
name to the “size” of the set of reachable vectors.

Definition. The rank of a matrix A∈R
m×n is the dimension of the column space

r = dimC(A)



Q2: Is there only one way to obtain a vector b by linear combination? 8/13

• Suppose b = Ax, could b also be obtained differently, as b = A(x + y)?

• Subtracting the two linear combinations leads to Ay =0, and the null space

N(A) = {y |Ay =0}⊆R
n.

• N(A) has structure, it is a vector subspace of Rn, N(A)≤R
n

Proof. ∀u,v ∈N(A)⇒Au =0,Av =0⇒A(u + v)=0⇒u+ v ∈N(A).

• Obviously, 0∈N(A), but the null space might also contain non-zero vectors

• Even when A=/ 0 (i.e., A is not the zero matrix) and y =/ 0 (i.e., y is not the zero vector),
there still might be choices of A and y such that Ay =0. This is different from a, x∈R,
where ax= 0⇒ a = 0 or x= 0.

• Give a distinct name to the “size” of the set of such vectors.

Definition. The nullity of a matrix A∈R
m×n is the dimension of the null space

z = dimN(A)



Q3: Is there a preferred way to describe vectors b= Ax? 9/13

• Since r = dimC(A) and C(A) is a vector subspace of Rm, r 6 m.

• The above implies that only r of the n columns of A are linearly independent

• Gather the linearly independent columns as the first r columns

A = [ Ar An−r ],Ar ∈R
m×r,An−r ∈R

m×(n−r),

a block decomposition of A, with the index denoting number of columns.

• Since columns An−r are linearly dependent on those of Ar, An−r = Ar Bn−r

A = Ar[ Ir Bn−r ] = Ar X ,X ∈R
r×n

The above states: “all the column vectors of A can be expressed as linear combinations of
r linearly independent columns, Ar.



Q4:Is there a preferred way to describe vectors y that satisfy Ay =0? 10/13

• Consider now N(A): Au = Ar Xu=0

• Let v = Xu. Ar with linearly independent columns, Ar v = 0⇒ v = 0⇒Xu = 0. Write
this out in blocks

[ Ir Bn−r ]

[

ur

un−r

]

= 0⇒u=

[

−Bn−r

In−r

]

un−r = Yn−r un−r.

This states that columns of Yn−r are a spanning set for N(A), u= Yn−r un−r.

• Is it a minimal spanning set, i.e., a basis? Consider

Yn−r w = 0⇒

[

−Bn−r

In−r

]

w =

[

−Bn−rw

w

]

=

[

0

0

]

⇒w =0.

Indeed columns of Yn−r are linearly independent, establishing that

z = dimN(A)= n− r

Theorem. (Rank-nullity theorem) For A∈R
m×n, r + z = n



Q5: Is there anything different about organizing vectors into rows? 11/13

• Matrix vector multiplication b = Ax = x1a1 + ···+ xn an, expresses a linear combination
of columns. Multiple linear combination of columns: B = AX .

• Organizing data into column vectors is an arbitrary choice, hence linear combinations of rows
should also be possible, and indeed are expressed as

cT = yT A⇒ c = AT y.

cT : the row vector obtained by linear combination of rows of A with scaling coefficients
gathered in the row vector yT . Multiple linear combinations of rows

C = YA

Rows of C are linear combination of rows of A with scalings as rows of Y .

• The set of vectors reachable by linear combination of rows of A is C(AT)

C(AT)= {c|∃y ∈R
m, c = AT y}≤R

n,

the row space or column space of the transpose, and is a subspace of Rn.

• Let p= dimC(AT), the dimension of the row space.



Dimensions of row, column spaces are equal 12/13

Proposition. The dimension of the column space equals that of the row space

r = dimC(A) = dimC(AT)= p.

Proof. Interpret A= Ar X as stating that the rows of A can be obtained linear combinations
of the rows of X with scalings contained in Ar. Since X ∈R

r×n,

p = dimC(AT)6 r = dimC(A).

The above is true for any matrix M , dimC(MT)6 dimC(M ). Choose M = AT

dimC((AT)T) 6 dimC(AT)⇒ r = dimC(A)6 dimC(AT) = p.

Since p6 r and r 6 p, it results that r = p.



FTLA components 13/13

Results up to now can be used to prove:

• C(A) is orthogonal to N(AT).

Proof. u∈C(A)⇒u=Ax, v∈N(AT)⇒ATv=0. Compute uTv=xTATv=xT
0=0.

• 0 is the only vector both in C(A) and N(AT).

Proof. Assume there might be b ∈ C(A) and b ∈ N(AT) and b =/ 0. Since b ∈ C(A),

∃x∈R
n such that b=Ax. Since b∈N(AT), ATb=AT(Ax)=0. Note that x=/ 0 since

x= 0⇒ b = 0, contradicting assumptions. Multiply equality AT Ax =0 on left by xT ,

xTATAx= 0⇒ (Ax)T(Ax) = bTb= ‖b‖2 = 0⇒ b = 0.

• C(A)⊕N(AT)=R
m. Rank-nullity theorem states dimC(A)+dimN(AT)=m, thereby

covering the entire codomain, Rm.


