- New concepts:
 - Projection review, projection onto subspaces
 - Best approximation
 - LSQ through projection
 - LSQ solution by normal equations

• Orthogonal projection of $m{v} \in \mathbb{R}^m$ along direction $m{q} \in \mathbb{R}^m$, $\|m{q}\| = 1$

Figure 1. Orthogonal projection operation P_q .

•
$$\boldsymbol{w} = (\|\boldsymbol{v}\|\cos\theta) \boldsymbol{q} = \left(\|\boldsymbol{v}\|\frac{\boldsymbol{q}\cdot\boldsymbol{v}}{\|\boldsymbol{q}\|\|\boldsymbol{v}\|}\right)\boldsymbol{q} = (\boldsymbol{q}^T\boldsymbol{q})\boldsymbol{q} = \boldsymbol{q}(\boldsymbol{q}^T\boldsymbol{v}) = (\boldsymbol{q}\boldsymbol{q}^T)\boldsymbol{v} \Rightarrow$$

• Projection matrix $P_q = q q^T (||q|| = 1)$

• Simple example: projection in \mathbb{R}^3 onto x_1x_2 -plane of $\boldsymbol{v} \in \mathbb{R}^3$

$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \boldsymbol{I}\boldsymbol{v} = \begin{bmatrix} \boldsymbol{e}_1 & \boldsymbol{e}_2 & \boldsymbol{e}_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = v_1\boldsymbol{e}_1 + v_2\boldsymbol{e}_2 + v_3\boldsymbol{e}_3$$

- The projection of \boldsymbol{v} onto x_1x_2 plane is $\boldsymbol{w} = v_1\boldsymbol{e}_1 + v_2\boldsymbol{e}_2 = \left| \begin{array}{c} v_2 \\ 0 \end{array} \right|$
- Projection is linear mapping, hence $oldsymbol{w}=oldsymbol{P}_{12}oldsymbol{v}$

$$\boldsymbol{P}_{12} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \boldsymbol{e}_1 \boldsymbol{e}_1^T + \boldsymbol{e}_2 \boldsymbol{e}_2^T$$

- Recall definition of orthonormal vectors
- Columns of $oldsymbol{Q} = [egin{array}{cccc} oldsymbol{q}_1 & ... & oldsymbol{q}_n \end{array}] \in \mathbb{R}^{m imes n}$ are orthonormal if

$$\boldsymbol{Q}^{T}\boldsymbol{Q} = \begin{bmatrix} \boldsymbol{q}_{1}^{T} \\ \vdots \\ \boldsymbol{q}_{n}^{T} \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_{1} & \dots & \boldsymbol{q}_{n} \end{bmatrix} = \begin{bmatrix} \boldsymbol{q}_{1}^{T}\boldsymbol{q}_{1} & \boldsymbol{q}_{1}^{T}\boldsymbol{q}_{2} & \dots & \boldsymbol{q}_{1}^{T}\boldsymbol{q}_{n} \\ \boldsymbol{q}_{2}^{T}\boldsymbol{q}_{1} & \boldsymbol{q}_{2}^{T}\boldsymbol{q}_{2} & \dots & \boldsymbol{q}_{2}^{T}\boldsymbol{q}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{q}_{n}^{T}\boldsymbol{q}_{1} & \boldsymbol{q}_{n}^{T}\boldsymbol{q}_{2} & \dots & \boldsymbol{q}_{n}^{T}\boldsymbol{q}_{n} \end{bmatrix} = \boldsymbol{I}_{n}$$

• Consider C(Q) with $Q = [q_1 \dots q_n] \in \mathbb{R}^{m \times n}$ orthonormal. The matrix

$$\boldsymbol{P}_{\boldsymbol{Q}} = \boldsymbol{Q} \boldsymbol{Q}^{T} = \left[\begin{array}{ccc} \boldsymbol{q}_{1} & \dots & \boldsymbol{q}_{n} \end{array}
ight] \left[\begin{array}{ccc} \boldsymbol{q}_{1}^{T} \\ \vdots \\ \boldsymbol{q}_{n}^{T} \end{array}
ight] = \boldsymbol{q}_{1} \boldsymbol{q}_{1}^{T} + \dots + \boldsymbol{q}_{n} \boldsymbol{q}_{n}^{T}$$

is the standard matrix of the orthogonal projection of a vector in \mathbb{R}^m onto the subspace spanned by { $q_1 \dots q_n$ }, namely C(Q).

- Consider approximating $m{b} \in \mathbb{R}^m$ by linear combination of n vectors, $m{A} \in \mathbb{R}^{m imes n}$
- Make approximation error e = b v = b Ax as small as possible

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\|\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\|_2$$

Error is measured in the 2-norm \Rightarrow the *least squares problem* (LSQ)

• Solution is the projection of ${\boldsymbol b}$ onto $C({\boldsymbol A})$

$$\boldsymbol{Q}\boldsymbol{R} = \boldsymbol{A}, \boldsymbol{P}_{C(\boldsymbol{A})} = \boldsymbol{Q}\boldsymbol{Q}^{T}, \boldsymbol{v} = (\boldsymbol{Q}\boldsymbol{Q}^{T})\boldsymbol{b}$$

• The vector \boldsymbol{x} is found by back-substitution from

$$\boldsymbol{v} = (\boldsymbol{Q}\boldsymbol{Q}^T)\boldsymbol{b} = (\boldsymbol{Q}\boldsymbol{R})\boldsymbol{x} \Rightarrow \boldsymbol{R}\boldsymbol{x} = \boldsymbol{Q}^T\boldsymbol{b}.$$

• The best approximant is found when the error vector $m{e}$ is orthogonal to $C(m{A})$

$$\boldsymbol{e} \perp C(\boldsymbol{A}) \Rightarrow \boldsymbol{A}^{T} \boldsymbol{e} = 0 \Rightarrow \boldsymbol{A}^{T} (\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}) = 0 \Rightarrow (\boldsymbol{A}^{T} \boldsymbol{A}) \, \boldsymbol{x} = \boldsymbol{A}^{T} \boldsymbol{b}$$

- The system $(A^T A) x = A^T b$ is the normal system of the LSQ problem
- Note that $\boldsymbol{A}^T \boldsymbol{A} \in \mathbb{R}^{n imes n}$