- New concepts:
 - Polynomial interpolation
 - LSQ polynomial approximant

- Consider approximating $m{b} \in \mathbb{R}^m$ by linear combination of n vectors, $m{A} \in \mathbb{R}^{m imes n}$
- Make approximation error $oldsymbol{e}=oldsymbol{b}-oldsymbol{v}=oldsymbol{b}-oldsymbol{A}oldsymbol{x}$ as small as possible

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\|\boldsymbol{b}-\boldsymbol{A}\boldsymbol{x}\|_2$$

Error is measured in the 2-norm \Rightarrow the *least squares problem* (LSQ)

- Solution is the projection of ${\boldsymbol b}$ onto $C({\boldsymbol A})$

$$\boldsymbol{Q}\boldsymbol{R} = \boldsymbol{A}, \boldsymbol{P}_{C(\boldsymbol{A})} = \boldsymbol{Q}\boldsymbol{Q}^{T}, \boldsymbol{v} = (\boldsymbol{Q}\boldsymbol{Q}^{T})\boldsymbol{b}$$

• The vector \boldsymbol{x} is found by back-substitution from

$$\boldsymbol{v} = (\boldsymbol{Q}\boldsymbol{Q}^T)\boldsymbol{b} = (\boldsymbol{Q}\boldsymbol{R})\boldsymbol{x} \Rightarrow \boldsymbol{R}\boldsymbol{x} = \boldsymbol{Q}^T\boldsymbol{b}.$$

- LSQ has myriad applications throughout science
- Consider data $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$
- The *polynomial interpolant* of degree m-1 passes through the data points

$$p_{m-1}(x) = c_0 + c_1 x + \dots + c_{m-1} x^{m-1} = \begin{bmatrix} 1 & x & \dots & x^{m-1} \end{bmatrix} c$$

• Impose conditions $p_{m-1}(x_i) = y_i, i = 1, ..., m$ to obtain linear system

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{m-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^{m-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{m-1} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_m \end{bmatrix} \Rightarrow \mathbf{A} \, \mathbf{c} = \mathbf{y}, \, \mathbf{A} \in \mathbb{R}^{m \times m}$$

>> m=4; x=transpose(1:m); y=1 - 2*x + 3*x.^2 - 4*x.^3; >> A=[x.^0 x.^1 x.^2 x.^3]; [Q,R]=qr(A); c = R \ (Q'*y); \Box c'

- LSQ has myriad applications throughout science
- Consider data $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$
- The *polynomial interpolant* of degree m-1 passes through the data points

$$p_{m-1}(x) = c_0 + c_1 x + \dots + c_{m-1} x^{m-1} = \begin{bmatrix} 1 & x & \dots & x^{m-1} \end{bmatrix} c$$

• Impose conditions $p_{m-1}(x_i) = y_i, i = 1, ..., m$ to obtain linear system

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{m-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^{m-1} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{m-1} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_m \end{bmatrix} \Rightarrow \mathbf{A} \, \mathbf{c} = \mathbf{y}, \, \mathbf{A} \in \mathbb{R}^{m \times m}$$

>> m=4; x=transpose(1:m); y=1 - 2*x + 3*x.^2 - 4*x.^3;

>> $A = [x.^0 x.^1 x.^2 x.^3]; [Q,R] = qr(A); c = R \setminus (Q'*y); \Box c'$

(1.0000 - 2.0000 3.0000 - 4.0000)

- Consider noisy data containing many measurements $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$
- Assume data without noise would conform to some polynomial law

$$y_i = z_i + r_i = c_0 + c_1 x_i + r_i, i = 1, \dots, m$$

>> m=100; x=linspace(0,1,m)';
>> $c0=2; c1=3; z=c0+c1*x; y=(z+rand(m,1)-0.5);$
>> A=ones(m,2); A(:,2)=x(:); [Q,R]=qr(A); c = R \ (Q'*y); \Box c'
>> w=A*c; plot(x,z,'k',x,y,'.r',x,w,'g');

- Consider noisy data containing many measurements $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$
- Assume data without noise would conform to some polynomial law

$$y_i = z_i + r_i = c_0 + c_1 x_i + r_i, i = 1, \dots, m$$

>> m=100; x=linspace(0,1,m)';
>> c0=2; c1=3; z=c0+c1*x; y=(z+rand(m,1)-0.5);
>> A=ones(m,2); A(:,2)=x(:); [Q,R]=qr(A); c = R \ (Q'*y); c'

(1.9506 3.0310)

>> w=A*c; plot(x,z,'k',x,y,'.r',x,w,'g');

- Consider noisy data containing many measurements $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$
- Assume data without noise would conform to some polynomial law

$$y_i = z_i + r_i = c_0 + c_1 x_i + r_i, i = 1, \dots, m$$

- Consider noisy data containing many measurements $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$
- Assume data without noise would conform to some polynomial law

$$y_i = z_i + r_i = c_0 + c_1 x_i + r_i, i = 1, \dots, m$$

>> m=100; x=linspace(0,3,m)';
>> c0=1; c1=1; c2=3; z=c0+c1*x+c2*x.^2; y=(z+rand(m,1)-0.5);
>> A=ones(m,3); A(:,2)=x(:); A(:,3)=x(:).^2; [Q,R]=qr(A); c=R\(Q'*y);_C'

(1.0047 0.9641 3.0143)

>> w=A*c; plot(x,z,'k',x,y,'.r',x,w,'g');

