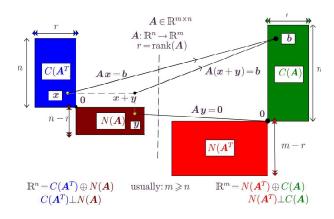
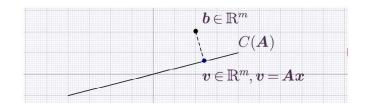
- New concepts:
 - The eigenvalue problem as one of the principal problems of linear algebra
 - Eigenvalues and eigenvectors
 - Characteristic polynomial
 - $\ \, {\sf Simple \ \, cases}$
 - $\rightarrow~$ diagonal matrices
 - $\rightarrow~$ scaling matrices
 - $\rightarrow~$ reflection matrices
 - \rightarrow rotation matrices (complex eigenvalues, eigenvectors)

- Coordinates in a new basis, solving a linear system Ax = Ib, $A \in \mathbb{R}^{m \times n}$
 - 1 Compute LU factorization, LU = A
 - 2 Solve Ly = b by forward substitution
 - 3 Solve Ux = y by backward substition
- Approximate $b \in \mathbb{R}^m$, $b \cong Ax$, $A \in \mathbb{R}^{m \times n}$, the least squares problem
 - Find QR factorization, QR = A. Projector onto C(A) = C(Q) is $P_Q = QQ^T$
 - Projection of **b** onto $C(\mathbf{A})$ is $\mathbf{Q}\mathbf{Q}^T\mathbf{b}$. Set this equal to a linear combination of columns of \mathbf{A} , $\mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{Q}^T\mathbf{b}$. Since $\mathbf{A} = \mathbf{Q}\mathbf{R}$, solve the triangular system $\mathbf{R}\mathbf{x} = \mathbf{Q}^T\mathbf{b}$ to find \mathbf{x} .





- For square matrix $A \in \mathbb{R}^{m \times m}$ find *non-zero* vectors whose *directions* are not changed by multiplication by A, $Ax = \lambda x$, λ is scalar, the *eigenvalue problem*.
- Consider the eigenproblem $A x = \lambda x$ for $A \in \mathbb{R}^{m \times m}$. Rewrite as

$$A x = \lambda x \Rightarrow (A - \lambda I) x = 0.$$

Since $x \neq 0$, a solution to eigenproblem exists only if $A - \lambda I$ is singular.

- $A \lambda I$ singular implies $det(A \lambda I) = 0$.
- Investigate form of $det(\mathbf{A} \lambda \mathbf{I}) = 0$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} & \dots & a_{1m} \\ a_{21} & a_{22} - \lambda & a_{23} & \dots & a_{2m} \\ a_{31} & a_{32} & a_{33} - \lambda & \dots & a_{3m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mm} - \lambda \end{vmatrix}$$

• $p_m(\lambda) = \det(\lambda I - A)$, an m^{th} -degree polynomial in λ , *characteristic polynomial* of A, with m roots, $\lambda_1, \lambda_2, ..., \lambda_m$, the eigenvalues of A

• $A \in \mathbb{R}^{m \times m}$, eigenvalue problem $Ax = \lambda x$ ($x \neq 0$) in matrix form:

 $AX = X\Lambda$

$$\boldsymbol{X} = [\boldsymbol{x}_1 \ \dots \ \boldsymbol{x}_m], \boldsymbol{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_m) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_m \end{bmatrix}.$$

- X is the eigenvector matrix, Λ is the (diagonal) eigenvalue matrix
- If column vectors of $oldsymbol{X}$ are linearly independent, then $oldsymbol{X}$ is invertible

 $A = X \Lambda X^{-1},$

the eigendecomposition of A (compare to A = LU, A = QR)

Rule "determinant of product = product of determinants" implies

 $\det(\boldsymbol{A}\boldsymbol{X}) = \det(\boldsymbol{X}\boldsymbol{\Lambda}) \Rightarrow \det(\boldsymbol{A}) = \det(\boldsymbol{\Lambda}) (\operatorname{for} \det(X) \neq 0).$

• Eigendecomposition of $I \in \mathbb{R}^{m \times m}$. Compare $AX = X\Lambda$

 $II = II, A = I, X = I, \Lambda = I$

to find eigenvalues $\lambda_1 = 1, ..., \lambda_m = 1$, eigenvectors $\boldsymbol{x}_1 = \boldsymbol{e}_1, ..., \boldsymbol{x}_m = \boldsymbol{e}_m$.

• Eigendecomposition of $A = diag(s_1, s_2, ..., s_m)$. Compare $AX = X\Lambda$

AI = IA

to find eigenvalues $\lambda_1 = s_1, ..., \lambda_m = s_m$, eigenvectors $\boldsymbol{x}_1 = \boldsymbol{e}_1, ..., \boldsymbol{x}_m = \boldsymbol{e}_m$.

• Reflection across x_1 -axis in \mathbb{R}^2

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

is a diagonal matrix, $\lambda_1\!=\!1$, $\lambda_2\!=\!-1$, $oldsymbol{x}_1\!=\!oldsymbol{e}_1$, $oldsymbol{x}_2\!=\!oldsymbol{e}_2$

• Rotate by θ around x_3 axis in \mathbb{R}^3

$$\boldsymbol{A} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}, m = 3$$

- One direction not change by rotation is ${m x}_3\!=\!{m e}_3$ with $\lambda_3\!=\!1$
- Where are the other two directions?
 - Compute characteristic polynomial $p_3(\lambda) = \det(\lambda I A)$

$$p_{3}(\lambda) = \begin{vmatrix} \lambda - \cos \theta & \sin \theta & 0 \\ -\sin \theta & \lambda - \cos \theta & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)(\lambda^{2} - 2\lambda \cos \theta + 1)$$

- One root of $p_3(\lambda)$ is $\lambda_3 = 1$, as expected.

- Solve $\lambda^2 - 2\lambda \cos \theta + 1 = 0$ to find remaining eigenvalues to be *complex*

$$\lambda_{1,2} = \cos\theta \pm \sqrt{\cos^2\theta - 1} = \cos\theta \pm i\sin\theta = e^{\pm i\theta} \in \mathbb{C}, i^2 = -1.$$

- Cartesian form z = x + iy
- Polar form $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$
- Complex conjugate of $z \in \mathbb{C}$ negates imaginary part $\bar{z} = x iy = re^{-i\theta}$
- Absolute value of $z \in \mathbb{C}$ is $|z| = (x^2 + y^2)^{1/2} = r$
- Argument of z is angle θ from polar form $z = r e^{i\theta}$
- Absolute value can be expressed as $|z| = (\bar{z} z)^{1/2}$
- Recall for $oldsymbol{x} \in \mathbb{R}^m$

$$\|\boldsymbol{x}\|_2^2 = \boldsymbol{x}^T \boldsymbol{x} = x_1^2 + \dots + x_m^2,$$

stating that squared 2-norm of real vector \boldsymbol{x} is sum of squares of components.

• Extend above to vector of complex numbers $oldsymbol{u} \in \mathbb{C}^m$ by

$$\|\boldsymbol{u}\|_{2}^{2} = |u_{1}|^{2} + \dots + |u_{m}|^{2} = (\bar{\boldsymbol{u}})^{T} \boldsymbol{u}.$$

• Taking the complex conjugate and transposing arises frequently, notation

 $\boldsymbol{u}^* = (\bar{\boldsymbol{u}})^T$, adjoint of \boldsymbol{u}

• Consider $\lambda_2 = e^{i\theta} = \exp(i\theta) = \cos\theta + i\sin\theta$. Eigenvector x_2 satisfies

$$(\boldsymbol{A}-\lambda_2\boldsymbol{I})\boldsymbol{x}_2=\boldsymbol{0},$$

which implies $\boldsymbol{x}_2 \in N(\boldsymbol{A} - \lambda_2 \boldsymbol{I})$

• Compute basis vector for $N(\boldsymbol{A} - \lambda_2 \boldsymbol{I})$

$$\boldsymbol{A} - \lambda_2 \boldsymbol{I} = \begin{bmatrix} -i\sin\theta & -\sin\theta & 0\\ \sin\theta & -i\sin\theta & 0\\ 0 & 0 & -e^{i\theta} \end{bmatrix} \sim \begin{bmatrix} -i\sin\theta & -\sin\theta & 0\\ 0 & 0 & 0\\ 0 & 0 & -e^{i\theta} \end{bmatrix}.$$

• Find eigenvector

• Repeat for
$$\lambda_2 = e^{-i\theta}$$
, find $x_3 = \begin{bmatrix} -i \\ 1 \\ 0 \end{bmatrix}$

$$(\boldsymbol{A} - \lambda_2 \boldsymbol{I})\boldsymbol{x}_2 = \begin{bmatrix} -i\sin\theta & -\sin\theta & 0\\ \sin\theta & -i\sin\theta & 0\\ 0 & 0 & -e^{i\theta} \end{bmatrix} \begin{bmatrix} i\\ 1\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} = \boldsymbol{0}.\checkmark$$

• In general a polynomial of degree $m \ p_m(\lambda)$ with real coefficients has m complext roots $\lambda_1, ..., \lambda_m \in \mathbb{C}$

• Consider

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

• Eigenvalues $\lambda_1 = \lambda_2 = 1$, a repeated root, since

$$\det(\lambda \boldsymbol{I} - \boldsymbol{A}) = \begin{vmatrix} \lambda - 1 & 1 \\ 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2.$$

• However

$$\boldsymbol{A} - \lambda_1 \boldsymbol{I} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

 $\operatorname{rank}(\boldsymbol{A} - \lambda_1 \boldsymbol{I}) = 1 = \dim C((\boldsymbol{A} - \lambda_1 \boldsymbol{I})^T)$, $\mathsf{FTLA} \Rightarrow \dim N(\boldsymbol{A} - \lambda_1 \boldsymbol{I}) = 1$, only one non-zero eigenvector