MATH347 L22: Eigenvalue theory

New concepts:

— Algebraic, geometric multiplicities

— Diagonalizability

— Computing eigenvalues

— Computing eigenvectors

— Ill-conditioning of finding roots of characteristic polynomial
— Diagonalizable matrices

— Utility of diagonal representation



Algebraic, geometric multiplicity

Definition 1. The algebraic multiplicity of an eigenvalue \ is the number of times it appears
as a repeated root of the characteristic polynomial p(\) =det(A — A1)

Example. p(A) = A(A — 1)(\ — 2)* has two single roots \; =0, A2 = 1 and a repeated root
A3.4=2. The eigenvalue A =2 has an algebraic multiplicity of 2

Definition 2. The geometric multiplicity of an eigenvalue )\ is the dimension of the null space
of A—\I

Definition 3. An eigenvalue for which the geometric multiplicity is less than the algebraic
multiplicity is said to be defective

Theorem. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal
to the algebraic multiplicity of that eigenvalue.



Computing eigenvalues 3/7

e Finding eigenvalues as roots of characteristic polynomial p(\) =det(A\I — A) is suitable for
small matrices A € R™*"™.

— analytical root-finding formulas are available only for m <4

— small errors in characteristic polynomial coefficients can lead to large errors in roots
e Octave/Matlab procedures to find characteristic polynomial

— poly(A) function returns the coefficients

— roots(p) function computes roots of the polynomial

matlab>>A=[5 -4 2; 5 -4 1; -2 2 -3]; p=poly(A); disp(p)
matlab>>roots(p)’

matlab>>



Computing eigenvalues 3/7

e Finding eigenvalues as roots of characteristic polynomial p(\) =det(A\I — A) is suitable for
small matrices A € R™*"™.

— analytical root-finding formulas are available only for m <4

— small errors in characteristic polynomial coefficients can lead to large errors in roots
e Octave/Matlab procedures to find characteristic polynomial

— poly(A) function returns the coefficients

— roots(p) function computes roots of the polynomial

matlab>>A=[5 -4 2; 5 -4 1; -2 2 -3]; p=poly(A); disp(p)
>> 1.0000 2.0000 -1.0000 -2.0000

matlab>>roots(p)’

matlab>>



Computing eigenvalues

3/7

e Finding eigenvalues as roots of characteristic polynomial p(\) =det(A\I — A) is suitable for
small matrices A € R™*"™.

— analytical root-finding formulas are available only for m <4

— small errors in characteristic polynomial coefficients can lead to large errors in roots
e Octave/Matlab procedures to find characteristic polynomial

— poly(A) function returns the coefficients
— roots(p) function computes roots of the polynomial

matlab>>A=[5 -4 2; 5 -4 1; -2 2 -3]; p=poly(A); disp(p)

>> 1.0000 2.0000

matlab>>roots(p)’
>>(1 -2 —1)

matlab>>

-1.0000

-2.0000



Computing eigenvectors

Find eigenvectors as non-trivial solutions of system (A — AI)x =0, e.g., \1=1

4—42\(22—\(—22—4

A—)\lI:/E) ~l 0 0 —6
k—22—4)k5—51}k000)

Note convenient choice of row operations to reduce amount of arithmetic, and use of knowl-
edge that A — A\ T is singular to deduce that last row must be null

In traditional form the above row-echelon reduced system corresponds to

y

—2x1+2x2—4x3 0 1
Oz1 + 0xg — 623 0 =>z=a| 1 ||z|=1=a=1/y2
\05131—1—0.%2—'—0333 = 0 k()}

N\

In Octave/Matlab the computations are carried out by the null function

matlab>>null (A-eye(3))’



Computing eigenvectors

Find eigenvectors as non-trivial solutions of system (A — AI)x =0, e.g., \1=1

4—42\(22—\(—22—4

A—)\lI:/S ~l 0 0 —6
k—22—4}k5—51}k000)

Note convenient choice of row operations to reduce amount of arithmetic, and use of knowl-
edge that A — A\ T is singular to deduce that last row must be null

In traditional form the above row-echelon reduced system corresponds to

y

—2x1+2x2—4x3 0 1
Oz1 + 0xg — 623 0 =>z=a| 1 ||z|=1=a=1/y2
\05131—1—0%24—0373 = 0 \O}

N\

In Octave/Matlab the computations are carried out by the null function
matlab>>null (A-eye(3))’

>>( —0.70711 —0.70711 5.5511e —17)



lll-conditioning of root-finding, alternative computational procedures

lll-conditioning: small errors in input produce large errors in output

The eigenvalues of T € R**? are \; 53=1, but small errors in numerical computation can
give roots of the characteristic polynomial with imaginary parts

matlab>>roots(poly(eye(3)))’
Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)

matlab>>eig(eye(3))’

Eigenvalue numerical methods use following properties:

— Az =) z= A 'z=)\"'2if A~ ! exists. “Inverse matrix has inverse eigenvalues”
— Axz= x= (A+ pl)x=(\+ p)x. “Shifted matrix has shifted eigenvalues”

— Ax=)z, x=By=ABy=)\By= B 'ABy=)\y, if B! exists

Matrix A is similar to matrix C if there exists B nonsingular for which C =B 'AB

Similar matrices have the same eigenvalues



lll-conditioning of root-finding, alternative computational procedures

lll-conditioning: small errors in input produce large errors in output
The eigenvalues of T € R**? are \; 53=1, but small errors in numerical computation can
give roots of the characteristic polynomial with imaginary parts

matlab>>roots(poly(eye(3)))’

>>(1 1—4.7606e —06-% 1+4.7606e —06-% )

Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)

matlab>>eig(eye(3))’

Eigenvalue numerical methods use following properties:

— Ax= ) x= A 'x=)\"lzif A ! exists. “Inverse matrix has inverse eigenvalues”
— Ax=X = (A+ pl)x=(\+ p)x. “Shifted matrix has shifted eigenvalues”

— Ax=)\z, x=By=ABy=)\By= B 'ABy=)\y, if B! exists

Matrix A is similar to matrix C' if there exists B nonsingular for which C = B 'AB

Similar matrices have the same eigenvalues



lll-conditioning of root-finding, alternative computational procedures

lll-conditioning: small errors in input produce large errors in output

The eigenvalues of T € R**? are \; 53=1, but small errors in numerical computation can

give roots of the characteristic polynomial with imaginary parts
matlab>>roots(poly(eye(3)))’

>>(1 1—4.7606e —06-% 1+4.7606e —06-% )

Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)
matlab>>eig(eye(3))’

>>(1 1 1)

Eigenvalue numerical methods use following properties:

— Ax= ) xz= A lx=)\"lzif A ! exists. “Inverse matrix has inverse eigenvalues”
— Ax= ) x= (A+ pl)x=(A+ p)z. “Shifted matrix has shifted eigenvalues”

— Ax=)\z, z=By=ABy=)\By= B 'ABy=)\y, if B~! exists

Matrix A is similar to matrix C' if there exists B nonsingular for which C = B~'AB

Similar matrices have the same eigenvalues



Matrices known to be diagonalizable, orthogonal diagonalization

It A c€R™*™ has distinct eigenvalues then A is diagonalizable
Even for A € R"*"™, eigenvalues might be complex
Complex number z € C has real part =, imaginary part y

—u’u. Extend to u € C™ by

lull=(a) ' u=u"u
A € R™*™ is unitarily diagonalizable if there exists Q € C™*™ such that

QR =Q'QR=1AQ=QA=A=QAQ",

with A diagonal eigenvalue matrix, Q unitary eigenvector matrix
A € R™*™ is orthogonally diagonalizable if there exists ) € R *"" such that

QA"'=Q'Q=1,AQ=QA=A=QAQ",

with A diagonal eigenvalue matrix, (Q orthogonal eigenvector matrix.

For A€ R™*"™, symmetric matrices (A = A’), antisymmetric matrices (A= —A"), normal
matrices (A AT = A’ A) are orthogonally diagonalizable.



When is diagonal factorization useful?

e Suppose A € R™*™ diagonalizable, A =X A X !
e Repeated application of A

A= (XAX HIXAX H=XAX"
AF=(XAX ) . (XAX H=XA X1
e Above allows definition of e, sin(A), cos(A), for example

e L o, 1 1 5 L
e —mx +ﬂx+§x +---+Hx + =

et = X(_l'/\ _|__1!A _|__1!A _|_..._|_k_1!_/\ _|_>){

e The differential system y’ = Ay has solution y(t) = e y(0).



