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• New concepts:

− Algebraic, geometric multiplicities

− Diagonalizability

− Computing eigenvalues

− Computing eigenvectors

− Ill-conditioning of finding roots of characteristic polynomial

− Diagonalizable matrices

− Utility of diagonal representation



Algebraic, geometric multiplicity 2/7

Definition 1. The algebraic multiplicity of an eigenvalue λ is the number of times it appears

as a repeated root of the characteristic polynomial p(λ)= det(A−λI)

Example. p(λ) = λ(λ − 1)(λ − 2)2 has two single roots λ1 = 0, λ2 = 1 and a repeated root
λ3,4 = 2. The eigenvalue λ= 2 has an algebraic multiplicity of 2

Definition 2. The geometric multiplicity of an eigenvalue λ is the dimension of the null space
of A−λI

Definition 3. An eigenvalue for which the geometric multiplicity is less than the algebraic
multiplicity is said to be defective

Theorem. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal
to the algebraic multiplicity of that eigenvalue.



Computing eigenvalues 3/7

• Finding eigenvalues as roots of characteristic polynomial p(λ)=det(λI −A) is suitable for
small matrices A∈Rm×m.

− analytical root-finding formulas are available only for m 6 4

− small errors in characteristic polynomial coefficients can lead to large errors in roots

• Octave/Matlab procedures to find characteristic polynomial

− poly(A) function returns the coefficients

− roots(p) function computes roots of the polynomial

matlab>>A=[5 -4 2; 5 -4 1; -2 2 -3]; p=poly(A); disp(p)

matlab>>roots(p)’

matlab>>
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Computing eigenvalues 3/7

• Finding eigenvalues as roots of characteristic polynomial p(λ)=det(λI −A) is suitable for
small matrices A∈Rm×m.

− analytical root-finding formulas are available only for m 6 4

− small errors in characteristic polynomial coefficients can lead to large errors in roots

• Octave/Matlab procedures to find characteristic polynomial

− poly(A) function returns the coefficients

− roots(p) function computes roots of the polynomial

matlab>>A=[5 -4 2; 5 -4 1; -2 2 -3]; p=poly(A); disp(p)

>> 1.0000 2.0000 -1.0000 -2.0000

matlab>>roots(p)’

>>( 1 −2 −1 )

matlab>>



Computing eigenvectors 4/7

• Find eigenvectors as non-trivial solutions of system (A−λI)x= 0, e.g., λ1 = 1

A−λ1I =







4 −4 2
5 −5 1
−2 2 −4





∼







−2 2 −4
0 0 −6
5 −5 1





∼







−2 2 −4
0 0 −6
0 0 0







Note convenient choice of row operations to reduce amount of arithmetic, and use of knowl-
edge that A−λ1I is singular to deduce that last row must be null

• In traditional form the above row-echelon reduced system corresponds to











−2x1 + 2x2− 4x3 = 0
0x1 + 0x2− 6x3 = 0
0x1 + 0x2 + 0x3 = 0

⇒x= α







1
1
0





, ‖x‖= 1⇒α = 1/ 2
√

• In Octave/Matlab the computations are carried out by the null function

matlab>>null(A-eye(3))’
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Note convenient choice of row operations to reduce amount of arithmetic, and use of knowl-
edge that A−λ1I is singular to deduce that last row must be null
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0x1 + 0x2− 6x3 = 0
0x1 + 0x2 + 0x3 = 0
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, ‖x‖= 1⇒α = 1/ 2
√

• In Octave/Matlab the computations are carried out by the null function

matlab>>null(A-eye(3))’

>>( −0.70711 −0.70711 5.5511e − 17 )



Ill-conditioning of root-finding, alternative computational procedures 5/7

• Ill-conditioning : small errors in input produce large errors in output

• The eigenvalues of I ∈R3×3 are λ1,2,3 = 1, but small errors in numerical computation can
give roots of the characteristic polynomial with imaginary parts

matlab>>roots(poly(eye(3)))’

• Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)

matlab>>eig(eye(3))’

• Eigenvalue numerical methods use following properties:

− Ax = λx⇒A−1x =λ−1x if A−1 exists. “Inverse matrix has inverse eigenvalues”

− Ax = λx⇒ (A + µI)x = (λ + µ)x. “Shifted matrix has shifted eigenvalues”

− Ax = λx, x = By⇒ABy =λBy⇒B−1ABy = λy, if B−1 exists

• Matrix A is similar to matrix C if there exists B nonsingular for which C =B−1AB

• Similar matrices have the same eigenvalues
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• Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)

matlab>>eig(eye(3))’

• Eigenvalue numerical methods use following properties:

− Ax = λx⇒A−1x =λ−1x if A−1 exists. “Inverse matrix has inverse eigenvalues”

− Ax = λx⇒ (A + µI)x = (λ + µ)x. “Shifted matrix has shifted eigenvalues”

− Ax = λx, x = By⇒ABy =λBy⇒B−1ABy = λy, if B−1 exists

• Matrix A is similar to matrix C if there exists B nonsingular for which C =B−1AB

• Similar matrices have the same eigenvalues
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• Ill-conditioning : small errors in input produce large errors in output

• The eigenvalues of I ∈R3×3 are λ1,2,3 = 1, but small errors in numerical computation can
give roots of the characteristic polynomial with imaginary parts

matlab>>roots(poly(eye(3)))’

>>( 1 1− 4.7606e − 06 · i 1 + 4.7606e − 06 · i )

• Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)

matlab>>eig(eye(3))’

>>( 1 1 1 )

• Eigenvalue numerical methods use following properties:

− Ax = λx⇒A−1x =λ−1x if A−1 exists. “Inverse matrix has inverse eigenvalues”

− Ax = λx⇒ (A + µI)x = (λ + µ)x. “Shifted matrix has shifted eigenvalues”

− Ax = λx, x = By⇒ABy =λBy⇒B−1ABy = λy, if B−1 exists

• Matrix A is similar to matrix C if there exists B nonsingular for which C =B−1AB

• Similar matrices have the same eigenvalues



Matrices known to be diagonalizable, orthogonal diagonalization 6/7

• If A∈Rm×m has distinct eigenvalues then A is diagonalizable

• Even for A∈Rm×m, eigenvalues might be complex

• Complex number z ∈C has real part x, imaginary part y

• Recall that for u∈Rm, ‖u‖2
2 = uT u. Extend to u∈Cm by

‖u‖2
2 = (ū)T u= u∗u

• A∈Rm×m is unitarily diagonalizable if there exists Q∈Cm×m such that

QQ∗ = Q∗Q = I ,AQ = QΛ⇒A= QΛQ∗,

with Λ diagonal eigenvalue matrix, Q unitary eigenvector matrix

• A∈Rm×m is orthogonally diagonalizable if there exists Q∈Rm×m such that

QQT = QTQ= I ,AQ = QΛ⇒A = QΛQT ,

with Λ diagonal eigenvalue matrix, Q orthogonal eigenvector matrix.

• For A∈Rm×m, symmetric matrices (A=AT), antisymmetric matrices (A=−AT), normal
matrices (AAT = AT A) are orthogonally diagonalizable.



When is diagonal factorization useful? 7/7

• Suppose A∈Rm×m diagonalizable, A= XΛX−1

• Repeated application of A

A2 = (XΛX−1)(XΛX−1) = XΛ
2 X−1

Ak = (XΛX−1) · ··· · (XΛX−1) = XΛ
k X−1

• Above allows definition of eA, sin(A), cos(A), for example
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• The differential system y ′= Ay has solution y(t)= eAt y(0).


