- New concepts:
 - Algebraic, geometric multiplicities
 - Diagonalizability
 - Computing eigenvalues
 - Computing eigenvectors
 - Ill-conditioning of finding roots of characteristic polynomial
 - Diagonalizable matrices
 - Utility of diagonal representation

Definition 1. The algebraic multiplicity of an eigenvalue λ is the number of times it appears as a repeated root of the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$

Example. $p(\lambda) = \lambda(\lambda - 1)(\lambda - 2)^2$ has two single roots $\lambda_1 = 0$, $\lambda_2 = 1$ and a repeated root $\lambda_{3,4} = 2$. The eigenvalue $\lambda = 2$ has an algebraic multiplicity of 2

Definition 2. The geometric multiplicity of an eigenvalue λ is the dimension of the null space of $A - \lambda I$

Definition 3. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be defective

Theorem. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal to the algebraic multiplicity of that eigenvalue.

- Finding eigenvalues as roots of characteristic polynomial p(λ) = det(λI − A) is suitable for small matrices A ∈ ℝ^{m×m}.
 - analytical root-finding formulas are available only for $m\leqslant 4$
 - small errors in characteristic polynomial coefficients can lead to large errors in roots
- Octave/Matlab procedures to find characteristic polynomial
 - poly(A) function returns the coefficients
 - roots(p) function computes roots of the polynomial

```
matlab>>A=[5 -4 2; 5 -4 1; -2 2 -3]; p=poly(A); disp(p)
```

matlab>>roots(p)'

matlab>>

- Finding eigenvalues as roots of characteristic polynomial p(λ) = det(λI − A) is suitable for small matrices A ∈ ℝ^{m×m}.
 - analytical root-finding formulas are available only for $m\leqslant 4$
 - small errors in characteristic polynomial coefficients can lead to large errors in roots
- Octave/Matlab procedures to find characteristic polynomial
 - poly(A) function returns the coefficients
 - roots(p) function computes roots of the polynomial

matlab>>A=[5 -4 2; 5 -4 1; -2 2 -3]; p=poly(A); disp(p)

>> 1.0000 2.0000 -1.0000 -2.0000

```
matlab>>roots(p)'
```

matlab>>

- Finding eigenvalues as roots of characteristic polynomial p(λ) = det(λI − A) is suitable for small matrices A ∈ ℝ^{m×m}.
 - analytical root-finding formulas are available only for $m\leqslant 4$
 - small errors in characteristic polynomial coefficients can lead to large errors in roots
- Octave/Matlab procedures to find characteristic polynomial
 - poly(A) function returns the coefficients
 - roots(p) function computes roots of the polynomial

matlab>>A=[5 -4 2; 5 -4 1; -2 2 -3]; p=poly(A); disp(p)

>> 1.0000 2.0000 -1.0000 -2.0000

matlab>>roots(p)'

>>(1 -2 -1)

matlab>>

• Find eigenvectors as non-trivial solutions of system $(A - \lambda I)x = 0$, e.g., $\lambda_1 = 1$

$$\boldsymbol{A} - \lambda_1 \boldsymbol{I} = \begin{pmatrix} 4 & -4 & 2 \\ 5 & -5 & 1 \\ -2 & 2 & -4 \end{pmatrix} \sim \begin{pmatrix} -2 & 2 & -4 \\ 0 & 0 & -6 \\ 5 & -5 & 1 \end{pmatrix} \sim \begin{pmatrix} -2 & 2 & -4 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

Note convenient choice of row operations to reduce amount of arithmetic, and use of knowledge that $A - \lambda_1 I$ is singular to deduce that last row must be null

In traditional form the above row-echelon reduced system corresponds to

$$\begin{cases} -2x_1 + 2x_2 - 4x_3 = 0\\ 0x_1 + 0x_2 - 6x_3 = 0\\ 0x_1 + 0x_2 + 0x_3 = 0 \end{cases} \Rightarrow \boldsymbol{x} = \alpha \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}, \|\boldsymbol{x}\| = 1 \Rightarrow \alpha = 1/\sqrt{2} \end{cases}$$

• In Octave/Matlab the computations are carried out by the null function

```
matlab>>null(A-eye(3));
```

• Find eigenvectors as non-trivial solutions of system $(A - \lambda I)x = 0$, e.g., $\lambda_1 = 1$

$$\boldsymbol{A} - \lambda_1 \boldsymbol{I} = \begin{pmatrix} 4 & -4 & 2 \\ 5 & -5 & 1 \\ -2 & 2 & -4 \end{pmatrix} \sim \begin{pmatrix} -2 & 2 & -4 \\ 0 & 0 & -6 \\ 5 & -5 & 1 \end{pmatrix} \sim \begin{pmatrix} -2 & 2 & -4 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{pmatrix}$$

Note convenient choice of row operations to reduce amount of arithmetic, and use of knowledge that $A - \lambda_1 I$ is singular to deduce that last row must be null

• In traditional form the above row-echelon reduced system corresponds to

$$\begin{cases} -2x_1 + 2x_2 - 4x_3 = 0\\ 0x_1 + 0x_2 - 6x_3 = 0\\ 0x_1 + 0x_2 + 0x_3 = 0 \end{cases} \Rightarrow \boldsymbol{x} = \alpha \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}, \|\boldsymbol{x}\| = 1 \Rightarrow \alpha = 1/\sqrt{2} \end{cases}$$

• In Octave/Matlab the computations are carried out by the null function

matlab>>null(A-eye(3))'

>>(-0.70711 - 0.70711 5.5511e - 17)

- *Ill-conditioning*: small errors in input produce large errors in output
- The eigenvalues of $I \in \mathbb{R}^{3 \times 3}$ are $\lambda_{1,2,3} = 1$, but small errors in numerical computation can give roots of the characteristic polynomial with imaginary parts

matlab>>roots(poly(eye(3)))'

• Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)

matlab>>eig(eye(3))'

- Eigenvalue numerical methods use following properties:
 - $Ax = \lambda x \Rightarrow A^{-1}x = \lambda^{-1}x$ if A^{-1} exists. "Inverse matrix has inverse eigenvalues"
 - $A x = \lambda x \Rightarrow (A + \mu I)x = (\lambda + \mu)x$. "Shifted matrix has shifted eigenvalues"
 - $-Ax = \lambda x$, $x = By \Rightarrow ABy = \lambda By \Rightarrow B^{-1}ABy = \lambda y$, if B^{-1} exists
- Matrix A is similar to matrix C if there exists B nonsingular for which $C = B^{-1}AB$
- Similar matrices have the same eigenvalues

- *Ill-conditioning*: small errors in input produce large errors in output
- The eigenvalues of $I \in \mathbb{R}^{3 \times 3}$ are $\lambda_{1,2,3} = 1$, but small errors in numerical computation can give roots of the characteristic polynomial with imaginary parts

```
matlab>>roots(poly(eye(3)))'
```

```
>>( 1 1-4.7606e-06\cdot i 1+4.7606e-06\cdot i )
```

• Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)

matlab>>eig(eye(3))'

- Eigenvalue numerical methods use following properties:
 - $Ax = \lambda x \Rightarrow A^{-1}x = \lambda^{-1}x$ if A^{-1} exists. "Inverse matrix has inverse eigenvalues"
 - $A x = \lambda x \Rightarrow (A + \mu I) x = (\lambda + \mu) x.$ "Shifted matrix has shifted eigenvalues"
 - $-Ax = \lambda x$, $x = By \Rightarrow ABy = \lambda By \Rightarrow B^{-1}ABy = \lambda y$, if B^{-1} exists
- Matrix $m{A}$ is similar to matrix $m{C}$ if there exists $m{B}$ nonsingular for which $m{C} = m{B}^{-1} m{A} m{B}$
- Similar matrices have the same eigenvalues

- *Ill-conditioning*: small errors in input produce large errors in output
- The eigenvalues of $I \in \mathbb{R}^{3 \times 3}$ are $\lambda_{1,2,3} = 1$, but small errors in numerical computation can give roots of the characteristic polynomial with imaginary parts

```
matlab>>roots(poly(eye(3)))'
```

```
>>( 1 1-4.7606e-06\cdot i 1+4.7606e-06\cdot i )
```

• Avoid ill-conditioning of root finding by numerical methods (MATH566, MATH661)

```
matlab>>eig(eye(3))'
```

>>(111)

- Eigenvalue numerical methods use following properties:
 - $Ax = \lambda x \Rightarrow A^{-1}x = \lambda^{-1}x$ if A^{-1} exists. "Inverse matrix has inverse eigenvalues"
 - $A x = \lambda x \Rightarrow (A + \mu I) x = (\lambda + \mu) x.$ "Shifted matrix has shifted eigenvalues"
 - $-Ax = \lambda x$, $x = By \Rightarrow ABy = \lambda By \Rightarrow B^{-1}ABy = \lambda y$, if B^{-1} exists
- Matrix A is similar to matrix C if there exists B nonsingular for which $C = B^{-1}AB$
- Similar matrices have the same eigenvalues

- If $oldsymbol{A} \in \mathbb{R}^{m imes m}$ has distinct eigenvalues then $oldsymbol{A}$ is diagonalizable
- Even for $oldsymbol{A} \in \mathbb{R}^{m imes m}$, eigenvalues might be complex

- Complex number $\boldsymbol{z} \in \mathbb{C}$ has real part x, imaginary part y
- Recall that for $m{u} \in \mathbb{R}^m$, $\|m{u}\|_2^2 = m{u}^Tm{u}$. Extend to $m{u} \in \mathbb{C}^m$ by

 $\|\boldsymbol{u}\|_2^2 = (\bar{\boldsymbol{u}})^T \boldsymbol{u} = \boldsymbol{u}^* \boldsymbol{u}$

• $A \in \mathbb{R}^{m imes m}$ is unitarily diagonalizable if there exists $Q \in \mathbb{C}^{m imes m}$ such that

$$QQ^* = Q^*Q = I, AQ = Q\Lambda \Rightarrow A = Q\Lambda Q^*,$$

with Λ diagonal eigenvalue matrix, Q unitary eigenvector matrix

• $A \in \mathbb{R}^{m imes m}$ is orthogonally diagonalizable if there exists $Q \in \mathbb{R}^{m imes m}$ such that

$$QQ^{T} = Q^{T}Q = I, AQ = Q\Lambda \Rightarrow A = Q\Lambda Q^{T},$$

with Λ diagonal eigenvalue matrix, Q orthogonal eigenvector matrix.

• For $A \in \mathbb{R}^{m \times m}$, symmetric matrices $(A = A^T)$, antisymmetric matrices $(A = -A^T)$, normal matrices $(A A^T = A^T A)$ are orthogonally diagonalizable.

- Suppose $A \in \mathbb{R}^{m imes m}$ diagonalizable, $A = X \Lambda X^{-1}$
- Repeated application of A

$$A^2 = (X \Lambda X^{-1}) (X \Lambda X^{-1}) = X \Lambda^2 X^{-1}$$
$$A^k = (X \Lambda X^{-1}) \cdots (X \Lambda X^{-1}) = X \Lambda^k X^{-1}$$

- Above allows definition of $e^{\pmb{A}}, \sin(\pmb{A}), \cos(\pmb{A})$, for example

$$e^{x} = \frac{1}{0!} x^{0} + \frac{1}{1!} x + \frac{1}{2!} x^{2} + \dots + \frac{1}{k!} x^{k} + \dots \Rightarrow$$

$$e^{\boldsymbol{A}} = \boldsymbol{X} \left(\frac{1}{0!} \boldsymbol{\Lambda}^0 + \frac{1}{1!} \boldsymbol{\Lambda} + \frac{1}{2!} \boldsymbol{\Lambda}^2 + \dots + \frac{1}{k!} \boldsymbol{\Lambda}^k + \dots \right) \boldsymbol{X}^{-1}$$

• The differential system y' = Ay has solution $y(t) = e^{At}y(0)$.