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• New concepts:

− An orthogonal eigenvalue-revealing decomposition: Schur

− Computability

− Non-computability of polynomial roots

− The need for an additional orthogonal decomposition

− Interpreting the eigenvalue decomposition

− Motivating the singular value decomposition

− The singular value decomposition (SVD)



The most common matrix factorizations 2/7

• Review of alread encountered matrix decompositions:

− LU = A factorization (Gaussian elimination), used to solve linear systems (compute
coordinates in new basis)

− QR=A factorization (Gram-Schmidt algorithm), used to solve least squares problems
(compute best possible approximation)

− AX = X Λ, eigenproblem. If X nonsingular, eigendecomposition X ΛX−1 = A
(reduction to diagonal form)

• Additional matrix decompositions:

− QTQT = A, Schur decomposition (reduction to triangular form)

− PJP −1 = A, Jordan decomposition (reduction to disjoint eigenspaces)

− U ΣV T =A, singular value decomposition (SVD, reduction to diagonal form, but with
different bases in the domain, codomain)
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Theorem. (Schur) Any square matrix A ∈Rm×m can be decomposed as A = QTQT, with
T ∈Rm×m upper triangular (tij = 0 for i > j) and Q∈Rm×m orthogonal (QQT = I).

• The eigenvalues of T triangular are its diagonal elements

• A is similar to T : Ax = λx⇒Ty = λy and y = QT y

Computability.

− roots of first degree polynomial: p1(x)= ax+ b = 0⇒ x=−b/a (a =/ 0)

− roots of second degree polynomia: p2(x)= ax2 + bx + c⇒

x1,2 =
−b± b2− 4ac

√

2a

− roots of third degree polynomial (Cardano’s formulas ~1520’s)

− roots of fourth degree polynomial (Ferrari’s formulas ~1540’s, irrespective of Inquisitor
Torquemada forbidding Valmes such knowledge)

− fifth degree polynomial: no formula possible (Galois, Abel Ruffini, 1820’s)
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• If A∈Rm×m is normal (AAT =AT A) then it has an orthogonal eigendecomposition ∃Q,

A= QΛQT , QQT = QT Q= I

• How does b= Ax work?

b= Ax = QΛQT x = QΛy = Qw

c = QT b⇔ Qc = Ib, y = QT x⇔ Qy = Ix

• In the I =[ e1 ... em ] basis set b=x1 a1 + ···+xmam implies all components of a1, ...,

am influence each component of b

bi =
∑

j=1

m

aijxj

• In the Q basis set w =Λy, component i of w influenced only by component i of y

wi = λi yi



Extend the idea: singular value decomposition 5/7

• For A∈Rm×n, b = Ax, a mapping from Rn to Rm try to define:

− an orthonormal basis V in Rn, V ∈Rn×n, VV T = V T V = In

Ix = Vy⇒ y = V T x

− an orthonormal basis U in Rm, U ∈Rm×m, UUT = UT U = Im

Ib= Uc⇒ c = UT b

− impose that the action of A in the new bases is a simple component scaling

c =Σy⇒UT b=ΣV T x⇒ b= U ΣV T x⇒

A = U ΣV T

− Note that Σ∈Rm×n



Can it be done? Yes: Singular value decomposition theorem 6/7

Theorem. (SVD) For any A∈Rm×n, A=U ΣV T, with U ∈Rm×m, V ∈Rn×n orthogonal,

Σ∈R+
m×n pseudo-diagonal Σ=diag(σ1, ..., σr, ..., 0), σ1 >σ2 > ···>σr > 0, r 6min (m,n).

r = rank(A).

The SVD is determined by eigendecomposition of ATA, and AAT

• AT A = (U ΣV T)T (U ΣV T) = V (ΣT
Σ ) V T , an eigendecomposition of ATA. The

columns of V are eigenvectors of ATA and called right singular vectors of A

• AAT = (U ΣV T)(U Σ
T V T)T = U (ΣΣ

T) UT , an eigendecomposition of AAT . The

columns of U are eigenvectors of AAT and called left singular vectors of A

• The matrix Σ has zero elements except for the diagonal that contains σi, the singular values
of A, computed as the square roots of the eigenvalues of ATA (or AAT)

The theorem also holds for complex matrices with transposition replaced by taking the adjoint,
A∈Cm×n, A = U ΣV ∗, with U ∈Cm×m, C∈Rn×n unitary.



An all-encompassing diagram: SVD and matrix subspaces 7/7

• SVD of A∈Rm×n reveals: rank(A), bases for C(A), N(AT), C(AT), N(A)
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