• New concepts:

- An orthogonal eigenvalue-revealing decomposition: Schur
- Computability
- Non-computability of polynomial roots
- The need for an additional orthogonal decomposition
- Interpreting the eigenvalue decomposition
- Motivating the singular value decomposition
- The singular value decomposition (SVD)

- Review of alread encountered matrix decompositions:
 - LU = A factorization (Gaussian elimination), used to solve linear systems (compute coordinates in new basis)
 - QR = A factorization (Gram-Schmidt algorithm), used to solve least squares problems (compute best possible approximation)
 - $AX = X\Lambda$, eigenproblem. If X nonsingular, eigendecomposition $X\Lambda X^{-1} = A$ (reduction to diagonal form)
- Additional matrix decompositions:
 - $QTQ^T = A$, Schur decomposition (reduction to triangular form)
 - $PJP^{-1} = A$, Jordan decomposition (reduction to disjoint eigenspaces)
 - $U\Sigma V^T = A$, singular value decomposition (SVD, reduction to diagonal form, but with different bases in the domain, codomain)

Theorem. (Schur) Any square matrix $A \in \mathbb{R}^{m \times m}$ can be decomposed as $A = QTQ^T$, with $T \in \mathbb{R}^{m \times m}$ upper triangular ($t_{ij} = 0$ for i > j) and $Q \in \mathbb{R}^{m \times m}$ orthogonal ($QQ^T = I$).

- The eigenvalues of $oldsymbol{T}$ triangular are its diagonal elements
- A is similar to T: $Ax = \lambda x \Rightarrow Ty = \lambda y$ and $y = Q^T y$

Computability.

- roots of first degree polynomial: $p_1(x) = ax + b = 0 \Rightarrow x = -b/a \ (a \neq 0)$
- roots of second degree polynomia: $p_2(x) = a x^2 + b x + c \Rightarrow$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- roots of third degree polynomial (Cardano's formulas ~1520's)
- roots of fourth degree polynomial (Ferrari's formulas ~1540's, irrespective of Inquisitor Torquemada forbidding Valmes such knowledge)
- fifth degree polynomial: no formula possible (Galois, Abel Ruffini, 1820's)

- If $A \in \mathbb{R}^{m \times m}$ is normal $(AA^T = A^TA)$ then it has an orthogonal eigendecomposition $\exists Q$, $A = Q \Lambda Q^T, Q Q^T = Q^T Q = I$
- How does b = Ax work?

$$\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x} = \boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{T}\boldsymbol{x} = \boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{y} = \boldsymbol{Q}\boldsymbol{w}$$

$$c = Q^T b \Leftrightarrow Q c = I b, y = Q^T x \Leftrightarrow Q y = I x$$

In the *I* = [*e*₁ ... *e_m*] basis set *b* = x₁*a*₁+···+ x_m*a_m* implies all components of *a*₁, ...,
a_m influence each component of *b*

$$b_i = \sum_{j=1}^m a_{ij} x_j$$

• In the $oldsymbol{Q}$ basis set $oldsymbol{w} = oldsymbol{\Lambda} oldsymbol{y}$, component i of $oldsymbol{w}$ influenced only by component i of $oldsymbol{y}$

$$w_i = \lambda_i y_i$$

- For $A \in \mathbb{R}^{m \times n}$, b = Ax, a mapping from \mathbb{R}^n to \mathbb{R}^m try to define:
 - an orthonormal basis V in \mathbb{R}^n , $V \in \mathbb{R}^{n imes n}$, $VV^T = V^T V = I_n$

$$Ix = Vy \Rightarrow y = V^Tx$$

– an orthonormal basis $m{U}$ in \mathbb{R}^m , $m{U} \in \mathbb{R}^{m imes m}$, $m{U} m{U}^T = m{U}^T m{U} = m{I}_m$

$$Ib = Uc \Rightarrow c = U^T b$$

- impose that the action of $oldsymbol{A}$ in the new bases is a simple component scaling

$$oldsymbol{c} = \Sigma \, oldsymbol{y} \Rightarrow oldsymbol{U}^T oldsymbol{b} = \Sigma \, oldsymbol{V}^T oldsymbol{x} \Rightarrow oldsymbol{b} = oldsymbol{U} \Sigma \, oldsymbol{V}^T oldsymbol{x} \Rightarrow oldsymbol{b} = oldsymbol{U} \Sigma \, oldsymbol{V}^T oldsymbol{x} \Rightarrow oldsymbol{b} = oldsymbol{U} \Sigma \, oldsymbol{V}^T oldsymbol{x}$$

– Note that $\mathbf{\Sigma} \in \mathbb{R}^{m imes n}$

Theorem. (SVD) For any $A \in \mathbb{R}^{m \times n}$, $A = U \Sigma V^T$, with $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ orthogonal, $\Sigma \in \mathbb{R}^{m \times n}_+$ pseudo-diagonal $\Sigma = \text{diag}(\sigma_1, ..., \sigma_r, ..., 0)$, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$, $r \le \min(m, n)$. r = rank(A).

The SVD is determined by eigendecomposition of A^TA , and AA^T

- A^T A = (UΣV^T)^T (UΣV^T) = V (Σ^TΣ) V^T, an eigendecomposition of A^TA. The columns of V are eigenvectors of A^TA and called *right singular vectors* of A
- AA^T = (UΣV^T)(UΣ^TV^T)^T = U (ΣΣ^T) U^T, an eigendecomposition of AA^T. The columns of U are eigenvectors of AA^T and called *left singular vectors* of A
- The matrix Σ has zero elements except for the diagonal that contains σ_i , the singular values of A, computed as the square roots of the eigenvalues of $A^T A$ (or $A A^T$)

The theorem also holds for complex matrices with transposition replaced by taking the adjoint, $A \in \mathbb{C}^{m \times n}$, $A = U \Sigma V^*$, with $U \in \mathbb{C}^{m \times m}$, $\mathbb{C} \in \mathbb{R}^{n \times n}$ unitary.

• SVD of $A \in \mathbb{R}^{m \times n}$ reveals: rank(A), bases for $C(A), N(A^T), C(A^T), N(A)$

