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� New concepts:

¡ SVD computation

¡ Matrix norm

¡ Low-rank approximations

¡ Image compression



SVD diagram 2/6

� SVD of A2Rm�n reveals: rank(A), bases for C(A); N(AT); C(AT); N(A)
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SVD Computation 3/6

� FromA=U�V T deduceAAT=U�2UT ,A TA=V �2V T , hence U is the eigenvector
matrix of AAT , and V is the eigenvector matrix of ATA

� SVD computation is carried out by solving eigenvalue problems

matlab>>A=[2 -1; -3 1]; [U S2]=eig(A*A'); [V S2]=eig(A'*A); S=sqrt(S2); disp([ U
S V']);

The above is not an SVD since the singular values on the diagonal are out of order. The matlab svd function
returns the correct ordering.
matlab>>[U S V]=svd(A); disp([U S V']);

� Hand computation of the SVD is a direct application of eigenvalue computation. Note that
eigenvalues of AAT and A TA are identical, but the eigenvectors differ.
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� FromA=U�V T deduceAAT=U�2UT ,A TA=V �2V T , hence U is the eigenvector
matrix of AAT , and V is the eigenvector matrix of ATA

� SVD computation is carried out by solving eigenvalue problems

matlab>>A=[2 -1; -3 1]; [U S2]=eig(A*A'); [V S2]=eig(A'*A); S=sqrt(S2); disp([ U
S V']);

>> -0.8174 -0.5760 0.2588 0 -0.3606 -0.9327
-0.5760 0.8174 0 3.8643 -0.9327 0.3606

The above is not an SVD since the singular values on the diagonal are out of order. The matlab svd function
returns the correct ordering.
matlab>>[U S V]=svd(A); disp([U S V']);

>> -0.5760 0.8174 3.8643 0 -0.9327 0.3606
0.8174 0.5760 0 0.2588 -0.3606 -0.9327

� Hand computation of the SVD is a direct application of eigenvalue computation. Note that
eigenvalues of AAT and A TA are identical, but the eigenvectors differ.



Matrix norm - a diagram for m=2 4/6

� Construct a diagram of the SVD of A=

�
2 ¡1
3 1

�
, with f(x)=Ax the associated linear

mapping by taking �2 [0; 2�] and

x=

�
cos �
sin �

�
; kxk2=1

traversing the unit circle in the domain of f : R2 ! R2. The image of the unit circle is
an ellipse. The length of the semiaxes are the singular values of A, the orientation of the
semiaxes are given by the right singular vectors U .
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� The above offers a way to think about the �size� of a matrix as defined by the maximal
amplification factor among all directions with the domain



Induced matrix norm 5/6

Definition. Given the vector norms kk(n): Rn ! R+. kk(m): Rm ! R+ for vector spaces
(Rm;R;+; �), (Rn;R;+; �), the induced matrix norm of A2Rm�n is defined as

kAk(m;n)= max
x2Rn

kAxk(m)
kxk(n)

= max
x2Rn;kxk(n)=1

kAxk(m):

The above definition states that the �size� of a matrix can be interpreted as the maximal
amplication factor among all possible orientations of a unit vector input.
� The most commonly encountered case is for both the kk(m) and the kk(n) norms to be 2-

norms
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� When the vector norms are both 2-norms as above, the induced matrix norm is simply the
largest singular value of A

kAk=�1



Low-rank matrix approximation 6/6

� Full SVD

A=
X
i=1

r

�iuivi
T ; r6min (m;n):

� Truncated SVD

A=�Ap=
X
i=1

p

�iuivi
T :

Interpret Ap as furnishing an approximation to A, with rank(Ap)= p6 r.
� Many applications, e.g., image compression
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Figure 1. Successive SVD approximations of Andy Warhol's painting, Marilyn Diptych (~1960), with
k= 10; 20; 40 rank-one updates.


