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� What is linear algebra and why is to so important to so many applications?
� Basic operations: defined to express linear combination
� Linear operators, Fundamental Theorem of Linear Algebra (FTLA)
� Factorizations: more convenient expression of linear combination

LU =A;QR=A;X�X¡1=A;U�V T =A

� Solving linear systems (change of basis) Ib=Ax
� Best 2-norm approximation: least squares minx kb¡Axk2
� Exposing the structure of a linear operator between the same sets through eigendecomposi-

tion
� Exposing the structure of a linear operator between different sets through the SVD
� Applications: any type of correlation



What is linear algebra, and why is it important? 2/23

� Science acquires and organizes knowledge into theories that can be verified by quantified
tests. Mathematics furnishes the appropriate context through rigorous definition of N;R;
Q;C.

� Most areas of science require groups of numbers to describe an observation. To organize
knowledge rules on how such groups of numbers may be combined are needed. Mathematics
furnishes the concept of a vector space (S ;V ;+)
i formal definition of a single number: scalar, �; � 2S
ii formal definition of a group of numbers: vector, u;v 2V
iii formal definition of a possible way to combine vectors: �u+ �v

� Algebra is concerned with precise definition of ways to combine mathematical objects, i.e.,
to organize more complex knowledge as a sequence of operations on simpler objects

� Linear algebra concentrates on one particular operation: the linear combination �u+ �v
� It turns out that a complete theory can be built around the linear combination, and this leads

to the many applications linear algebra finds in all branches of knowledge.



Basic operations, concepts 3/23

� Group vectors as column vectors into matrices A=( a1 a2 ::: an )2Rm�n

� Define matrix-vector multiplication to express the basic linear combination operation

b=Ax=x1a1+ :::+xnan

� Introduce a way to switch between column and row storage through the transposition oper-
ation AT . (A+B)T =AT +BT , (AB)T =BTAT

� Transform between one set of basis vectors and another bI =Ax
� Linear independence establishes when a vector cannot be described as a linear combination

of other vectors, i.e., if the only way to satisfy x1a1+ :::+xnan=0 is for x1= :::=xn=0,
then the vectors a1; :::;an are linearly independent

� The span ha1; :::;ani=fb j 9x2Rn such thatb=x1a1+ :::xnang is the set of all vectors
is reachable by linear combination of a1; :::;an

� The set of vectors fa1; :::;ang is a basis of a vector space V if ha1; :::;ani=V , and a1; :::;
an are linearly independent

� The number of vectors in a basis is the dimension of a vector space.



Characterization of a linear operator 4/23

� Any linear operator T :D!C, T (�u+ �v) = �T (u) + �T (v) can be characterized by a
matrix A= [ T (e1) T (e2) ::: T (en) ]

� For each matrix A2Rm�n there exist four fundamental subspaces:
1 Column space, C(A) = fb2Rmj 9x2Rn such that b=Axg�Rm, the part of Rm

reachable by linear combination of columns of A
2 Left null space, N(AT)= fy 2RmjATy=0g�Rm, the part of Rm not reachable by

linear combination of columns of A
3 Row space, R(A) =C(AT) = fc2Rnj 9y 2Rm such that c=AT yg�Rn, the part

of Rm reachable by linear combination of rows of A
4 Null space, N(A) = fx2RnjAx=0g�Rn, the part of Rm not reachable by linear

combination of rows of A
The fundamental theorem of linear algebra (FTLA) states

C(A); N(AT)�Rm; C(A)?N(AT); C(A)\N(AT)= f0g; C(A)�N(AT)=Rm

C(AT); N(A)�Rn; C(AT)?N(A); C(AT)\N(A)= f0g; C(AT)�N(A)=Rn



Common linear operators 5/23

� Stretching, T :Rm!Rm, T (v)=Av

A=

266664
�1 0 ::: 0
0 �2 ::: 0
��� ��� ��� ���
0 0 ::: �m

377775
� Orthogonal projection of v 2Rm along u2Rm, kuk=1, T (v)=Puv

Pu=uu
T

� Reflection across vector w 2Rm, kwk=1, T (v)=Rv

R=2wwT ¡ I
� Rotation in R2

R�=

�
cos � ¡sin �
sin � cos �

�
� Linear mapping composition, U :Rp!Rm, U =T �S

w=Cu=U(u)=T (S(u))=T (Au)=BAu)C =BA



FTLA 6/23

A:Rn!Rm

Rn=C(AT)�N(A) Rm=N(AT)�C(A)
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Factorizations 7/23

� LU =A, (or LU =PA with P a permutation matrix) Gaussian elimination, solving linear
systems. Given A2Rm�m; b2Rm, b2C(A), find x2Rm such that Ax= b= Ib by:
1 Factorize, LU =PA
2 Solve lower triangular system Ly=Pb by forward substitution
3 Solve upper triangular system Ux= y by backward substitution

� QR=A, (or QR=PA withP a permutation matrix) Gram-Schmidt, solving least squares
problem. Given A2Rm�n, b2Rm, n6m, solve minx2Rn kb¡Axk by:
1 Factorize, QR=PA
2 Solve upper triangular system Rx=QTb by forward substitution

� X�X¡1 = A, eigendecomposition of A 2 Rm�m (X invertible if A is normal, i.e.,
AAT =ATA)

� Q�QT =A, orthogonal eigendecomposition when AAT =ATA (normal)
� QTQT = A, Schur decomposition of A 2 Rm�m, Q orthogonal matrix, T triangular

matrix, decomposition always exists
� U�V T = A, Singular value decomposition of A 2 Rm�n, U 2 Rm�m; V 2 Rn�n

orthogonal matrices, �=diag(�1; �2; :::)2R+
m�n, decomposition always exists



Solving Ax= b by Gaussian elimination 8/23

� Gaussian elimination produces a sequence matrices similar to A2Rm�m

A=A(0)�A(1)� ����A(k)� ����A(m¡1)

� Step k produces zeros underneath diagonal position (k; k)
� Step k can be represented as multiplication by matrix

A(k)=L
k
A(k¡1);Lk=

0BBBBBBBBBBBBBB@

1 ::: 0 ::: 1
0 ��� 0 ::: 0
0 ::: 1 ::: 0
0 ::: ¡lk+1;k ::: 0
��� ::: ��� ��� ���
0 ::: ¡lm;k ::: 1

1CCCCCCCCCCCCCCA; lj;k=
aj;k
(k¡1)

ak;k
(k¡1) ;A

(k)= [ai;j
(k)]

� All m¡ 1 steps produce an upper triangular matrix

Lm¡1:::L2L1A=U)A=L1
¡1L2

¡1:::Lm¡1
¡1 U =LU

� With permutations PA=LU (Matlab [L,U,P]=lu(A), A=P'*L*U)



Matrix formulation of Gaussian elimination 9/23

� With known LU -factorization: Ax= b) (LU )x=Pb)L (Ux)=Pb
� To solve Ax= b:

1 Carry out LU -factorization: P TLU =A
2 Solve Ly= c=Pb by forward substitution to find y
3 Solve Ux= y by backward substitution

� FLOP = floating point operation = one multiplication and one addition
� Operation counts: how many FLOPS in each step?

1 Each LkA
(k¡1) costs (m¡ k)2 FLOPS. Overall

(m¡ 1)2+(m¡ 2)2+ ���+12=
m(m¡ 1)(2m¡ 1)

6
� m3

3

2 Forward substitution step k costs k flops

1+2+ ���+m=
m(m+1)

2
� m2

2

3 Backward substitution cost is identical m(m+1)/2�m2/2/



Gram-Schmidt as QR 10/23

� Orthonormalization of columns of A is also a factorization

A= [ a1 a2 ::: an ] = [ q1 q2 ::: qn ]

266664
r11 r12 ::: r1n
0 r22 ::: r2n
��� ���
0 0 ::: rnn

377775=QR

a1= r11 q1
a2= r12 q1+ r22 q2
a3= r13 q1+ r23 q2+ r33 q3
���
an= r1nq1+ r2n q2+ r3n q3+ ���+ rnnqn

q1=a1/r11
q2=(a2¡ r12 q1)/r22
q3=(a3¡ r13 q1¡ r23 q2)/r33
���

� Operation count:
¡ rjk= qj

Tak costs m FLOPS
¡ There are 1+2+ ���+n components in R, Overall cost n(n+1)m/2

� With permutations AP =QR (Matlab [Q,R,P]=qr(A) )



Solving linear Ax= b, A2Rm�m systems by QR 11/23

� With known QR-factorization: Ax= b) (QRP T)x= b)Ry=QTb
� To solve Ax= b:

1 Carry out QR-factorization: QRP T =A
2 Compute c=QT b
3 Solve Ry= c by backward substitution
4 Find x=P Ty

� Operation counts: how many FLOPS in each step?
1 QR-factorization m2(m+1)/2�m3/2
2 Compute c, m2

3 Backward substitution m(m+1)/2�m2/2



Least squares 12/23

� Consider approximating b2Rm by linear combination of n vectors, A2Rm�n

� Make approximation error e= b¡v= b¡Ax as small as possible

min
x2Rn

kb¡Axk2

Error is measured in the 2-norm ) the least squares problem (LSQ)

C(A)

b2Rm

v 2Rm;v=Ax

� Solution is the projection of b onto C(A)

QR=A;PC(A)=QQT ;v=(QQT)b

� The vector x is found by back-substitution from

v=(QQT)b=(QR)x)Rx=QT b:



The eigenvalue problem 13/23

� For square matrix A 2 Rm�m find non-zero vectors whose directions are not changed by
multiplication by A, Ax=�x, � is scalar, the eigenvalue problem.

� Consider the eigenproblem Ax=�x for A2Rm�m. Rewrite as

Ax=�x) (A¡�I)x=0:

Since x=/ 0, a solution to eigenproblem exists only if A¡�I is singular.
� A¡�I singular implies det(A¡�I)= 0, x2N(A¡�I)
� Investigate form of det(A¡�I)= 0

det(A¡�I)=

����������������������

a11¡� a12 a13 ::: a1m
a21 a22¡� a23 ::: a2m
a31 a32 a33¡� ::: a3m
��� ��� ��� ��� ���

am1 am2 am3 ::: amm¡�

����������������������
� pm(�)=det(�I¡A), an mth-degree polynomial in �, characteristic polynomial of A, with
m roots, �1; �2; :::; �m, the eigenvalues of A



Eigenvalue problem in matrix form 14/23

� A2Rm�m, eigenvalue problem Ax=�x (x=/ 0) in matrix form:

AX =X�

X = [ x1 ::: xm ];�=diag(�1; :::; �m)=

266664
�1 0 ::: 0
0 �2 ::: 0
��� ��� ��� ���
0 0 ::: �m

377775:
� X is the eigenvector matrix, � is the (diagonal) eigenvalue matrix
� If column vectors of X are linearly independent, then X is invertible

A=X�X¡1;

the eigendecomposition of A (compare to A=LU , A=QR)
� Rule �determinant of product = product of determinants� implies

det(AX)= det (X�))det(A)= det(�) (for det(X)=/ 0):



Algebraic, geometric multiplicity 15/23

Definition 1. The algebraic multiplicity of an eigenvalue � is the number of times it appears
as a repeated root of the characteristic polynomial p(�)=det(A¡�I)

Example. p(�) = �(� ¡ 1)(� ¡ 2)2 has two single roots �1 = 0, �2 = 1 and a repeated root
�3;4=2. The eigenvalue �=2 has an algebraic multiplicity of 2

Definition 2. The geometric multiplicity of an eigenvalue � is the dimension of the null space
of A¡�I

Definition 3. An eigenvalue for which the geometric multiplicity is less than the algebraic
multiplicity is said to be defective

Theorem. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal
to the algebraic multiplicity of that eigenvalue.



SVD 16/23

� SVD of A2Rm�n reveals: rank(A), bases for C(A); N(AT); C(AT); N(A)

A U �m

n

= m

m

m

n

n

m

r

r
V T

U

A=( u1 ::: ur ur+1 ::: um )

0BBBBBBBBBB@
�1

���
�r

0
���
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0BBBBBBBBBBBBBB@
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���
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T
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Computing the SVD, reduced SVD, pseudoinverse 17/23

� From A=U�V T obtain

B=AAT =U��TUT =U�mU
T)BU =U�m

Singular vectors U are eigenvectors of B=AAT

C =ATA=V �T �V T =V �nV
T)CV =V �n

Singular vectors V are eigenvectors of C =ATA

� For A2Rm�n the reduced SVD is

Ur�rVr
T =A=

X
j=1

r

�jujvj
T

Ur= [ u1 ::: ur ];Vr= [ v1 ::: vr ];�r= diag(�1; :::; �r);

� Pseudoinverse of A2Rm�n isA+=V �+UT 2Rn�m (pinv(A) in Matlab)

� Solution to Ax= b is x=A+ b

� Solution to minx kb¡Axk is x=A+ b



SVD applications 18/23

� SVD relevant for correlations: N measurements of x(t)2Rn at t1; :::; tN

X = [ x1 x2 ::: xn ]2RN�n

Choose origin such that E[x] =0, construct covariance matrix

CX=X
TX =

26666664
x1
T

x2
T

���
xn
T

37777775[ x1 x2 ::: xn ] =

26666664
x1
Tx1 x1

Tx2 ::: x1
Txn

x2
Tx1 x2

Tx2 ::: x2
Txn

��� ��� ��� ���
xn
Tx1 xn

Tx2 ::: xn
Txn

37777775
Eigenvectors of C are singular vectors V of X = U�V T ) image compression, graph
partition, social networks, data analysis

� Correlations arise often in applications, e.g., images, time series.



Applications: PageRank 19/23

� PageRank was the original Google search algorithm

� Construct graph with edges weighted by number of links

Figure 1. Graph of interlinked web sites

� Form transition matrix, A=[aij], aij weighted number of links to j from i. Weight chosen
such that

P
i
aij=1: Solve Ax=x, x= [xi], xi relative importance of node i.

A=

266664
0 0 1 1/2
1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0

377775



Applications: Finite element models (FEM) of structures 20/23

� Spring Hooke law: f = ku, force is linear in displacement
� Multiple connected springs

Figure 2. Stiffness matrix example.

� Structure can be described in either force coordinates or displacement coordinates. Change
of coordinates: Ku= f .



Applications: Realistic FEM example 21/23

Figure 3. Finite element model of wind turbine with color-coded internal forces (stress) due to wind
action.



Applications: predator-prey, resource-consumption models 22/23

Figure 4. Form matrixA of which resource is used by which consumer ordered by value (e.g., biomass).
Find most important consumption patterns in ecosystem by SVD, U �V T = A. Determine most
prevalent consumption behavior by least squares.



Applications: model reduction 23/23

� Given some complicated model, find most important behavior
� Organize model into a matrix A, compute truncated SVD Uk�kVk

T
=�A

Figure 5. Extracting important behavior of a complex biomolecule from thermal background


