MATH347 Course review

What is linear algebra and why is to so important to so many applications?
Basic operations: defined to express linear combination

Linear operators, Fundamental Theorem of Linear Algebra (FTLA)
Factorizations: more convenient expression of linear combination

LU=A QR=A XAX '=AUXV'=A

Solving linear systems (change of basis) Ib= A«x

Best 2-norm approximation: least squares min,, ||b — Ax||-

Exposing the structure of a linear operator between the same sets through eigendecomposi-
tion

Exposing the structure of a linear operator between different sets through the SVD
Applications: any type of correlation



What is linear algebra, and why is it important?

Science acquires and organizes knowledge into theories that can be verified by quantified
tests. Mathematics furnishes the appropriate context through rigorous definition of N, IR,

Q,C.

Most areas of science require groups of numbers to describe an observation. To organize
knowledge rules on how such groups of numbers may be combined are needed. Mathematics
furnishes the concept of a vector space (S,V, +)

I formal definition of a single number: scalar, o, 3 €S

i formal definition of a group of numbers: vector, u,v € V

iii formal definition of a possible way to combine vectors: au + fv
Algebra is concerned with precise definition of ways to combine mathematical objects, i.e.,
to organize more complex knowledge as a sequence of operations on simpler objects
Linear algebra concentrates on one particular operation: the linear combination au + v
It turns out that a complete theory can be built around the linear combination, and this leads
to the many applications linear algebra finds in all branches of knowledge.



Basic operations, concepts

Group vectors as column vectors into matrices A=(a; a, ... a, )€ R™*"
Define matrix-vector multiplication to express the basic linear combination operation

b=Ax=xa;+... +z,a,

Introduce a way to switch between column and row storage through the transposition oper-
ation A”. (A+B)'=A"+B", (AB)' =B"'A"

Transform between one set of basis vectors and another bl = Ax

Linear independence establishes when a vector cannot be described as a linear combination
of other vectors, i.e., if the only way to satisty x1a1+ ...+ x,a,=0isfor v1=...=x,=0,
then the vectors a, ..., a,, are linearly independent

The span (ay,...,a,) ={b|dx € R"suchthatb=xa, + ...x,a,} is the set of all vectors
is reachable by linear combination of a4, ..., a,

The set of vectors {a, ..., a,} is a basis of a vector space V if (aq,...,a,) =V, and a, ...,
a,, are linearly independent

The number of vectors in a basis is the dimension of a vector space.



Characterization of a linear operator

e Any linear operator T:D — C, T'(au + pv) = a1 (u) 4+ FT(v) can be characterized by a
matrix A=| T(e;) T(es) ... T(e,) |
e For each matrix A € R™*" there exist four fundamental subspaces:
1 Column space, C(A)={becR™|dx € R"suchthatb= Ax} CR™, the part of R™
reachable by linear combination of columns of A
2 Left null space, N(A")={yeR"| ATy=0} CR™, the part of R™ not reachable by
linear combination of columns of A
3 Row space, R(A)=C(A") ={ce R" 3y € R™suchthatc= A"y} CR", the part
of IR™ reachable by linear combination of rows of A
4 Null space, N(A) ={x € R"| Ax =0} CRR", the part of R not reachable by linear

combination of rows of A
The fundamental theorem of linear algebra (FTLA) states

C(A), N(AT) <R™ C(A)LN(AT), C(A)NN(AT)={0}, C(A)® N(AT)=R"
C(AT), N(A) <R", C(AT)LN(A), C(AT)NN(A)={0}, C(AT)® N(A)=R"



Common linear operators

Stretching, T:R™ — R™, T'(v) = Av

MO0
A0 de 0
00 . A

Orthogonal projection of v € R™ along u € R™, ||u||=1, T'(v) = P,v

P,=uu’
Reflection across vector w € R™, ||w|| =1, T'(v) = Rv

R=2ww! 1T
Rotation in R?

cosf) —sinb
Re_[sin@ cos f ]

Linear mapping composition, U: R? — R, U=T0 5
w=Cu=U(u)=T(S(u))=T(Au)=BAu=C=BA



FTLA

A cRmxn K« >

« » A:R"—R™
r=rank(A)

\ 2
R'"=C(AY® N(A) usually:m>n R"=NAH & C(A)
C(AT)LN(A) N(AT)LC(A)



I

(Ll Factorizations 7/23

e LU=A, (or LU= PA with P a permutation matrix) Gaussian elimination, solving linear
systems. Given A€ R beR™, be C(A), find x € R™ such that Ax=b=1Ib by:
1 Factorize, LU = PA
2 Solve lower triangular system L1y = Pb by forward substitution
3 Solve upper triangular system Ux = y by backward substitution
e QR=A, (or QR= PA with P a permutation matrix) Gram-Schmidt, solving least squares
problem. Given A € R"*", be R, n<m, solve mingcgn [|[b — Ax|| by:
1 Factorize, Q R=PA
2 Solve upper triangular system Rx = Q'b by forward substitution
e XAX != A, eigendecomposition of A € R™*™ (X invertible if A is normal,
AAT = ATA)
e QAQ"= A, orthogonal eigendecomposition when A A" = A" A (normal)

o QTQ" = A, Schur decomposition of A € R™*™, (@ orthogonal matrix, T" triangular
matrix, decomposition always exists

e UX VT = A, Singular value decomposition of A € R™*", U € R™*™ V ¢ R"*"
orthogonal matrices, 3 =diag(oy, 09, ...) € R"™", decomposition always exists



A=A0 o AD ...

e Step k produces zeros underneath diagonal position (%, k)
e Step k can be represented as multiplication by matrix

AW =L A®=D L, =

e All m — 1 steps produce an upper triangular matrix

L, 1. L ltA=U=A=L{'L;'.. L.} U=LU

Solving A2 = b by Gaussian elimination

~ AR ...

e O O O =

_ %k AW =g

1)

e Gaussian elimination produces a sequence matrices similar to A € R"*"™

~ A(m—l)

(k—1)

.~

(h—1)°

g k

e With permutations PA = LU (Matlab [L,U,P]=1u(A), A=P’x*LxU)



Matrix formulation of Gaussian elimination

With known L U-factorization: Ax =b=- (LU )x=Pb= L (Ux)= Pb

To solve Ax = b:

1 Carry out LU-factorization: PT LU = A

2 Solve Ly = c= Pb by forward substitution to find vy
3 Solve Ux = y by backward substitution

FLOP = floating point operation = one multiplication and one addition

Operation counts: how many FLOPS in each step?
1 Each L, A%~Y costs (m — k)? FLOPS. Overall

m(m—1)(2m — 1)

a4
Y

m

3

(m—1)2+(m—2)*++ 1= i

2 Forward substitution step k costs k flops
m(m+1) _m?
2 2

3 Backward substitution cost is identical m(m+1)/2~m?/2/

3



Gram-Schmidt as Q R

e Orthonormalization of columns of A is also a factorization

11 T2 ... Tin

0 799 ... T9,
A=la; ay ... a,]=[q1 @ ... q,]| 2 N “ |=QR

0 0 . T |
a;=rnriq g =ai/rnm

as="12q1 1+ 722 Q>

=(ags—r r
a3z=113q1 1+ 723921733 q3 ®=(a2=71241) /72

QS:(CLS—T13CI1—7”23Q2)/7“33
an:rlnq1+r2nq2+r3nq3+"'—i_/rnnqn

e Operation count:

— Tjp= quak costs m FLOPS

— There are 1+ 2+ --- +n components in R, Overall cost n(n+1)m /2
e With permutations AP = Q R (Matlab [Q,R,P]=qr(A) )



Solving linear Ax=b, A € R™*" systems by (Q R

e With known Q R-factorization: Az =b= (QRP")z=b= Ry=Q"'b
e To solve Ax =b:

1 Carry out (Q R-factorization: Q RP' =A

2 Compute c=Q'b

3 Solve Ry = c by backward substitution

4 Findx=Ply
e Operation counts: how many FLOPS in each step?

1 @ R-factorization m*(m+1)/2~m?/2

2 Compute ¢, m?

3 Backward substitution m(m+1)/2~m?*/2



1l Least squares

e Consider approximating b € IR™ by linear combination of n vectors, A € R™*"
e Make approximation error e =b — v =5b — Ax as small as possible

min |[|b— Ax|,
xzcR"”

Error is measured in the 2-norm = the least squares problem (LSQ)
beR™

e Solution is the projection of b onto C'(A)

QR=A Py4=QQ",v=(QQ")b
e The vector x is found by back-substitution from

v=(QQ")b=(QR)z= Rz =Q"b.



The eigenvalue problem 13/23

e For square matrix A € R"™*™ find non-zero vectors whose directions are not changed by
multiplication by A, Ax = Ax, ) is scalar, the eigenvalue problem.
e Consider the eigenproblem Ax = A ax for A € R"*". Rewrite as

Ax= x=(A—-\)x=0.

Since  #+ 0, a solution to eigenproblem exists only if A — AT is singular.
e A — \I singular implies det(A —\I) =0, x € N(A —\I)
e Investigate form of det(A —A\I)=0

aig— A a12 a13 A1m

a21 Qo2 — A a23 A2m,

det(A - )\I) — asi aso as3 — AL aA3m
Am1 A2 Ams3 v Qmm — A

e pn(A)=det(A — A), an m*™-degree polynomial in \, characteristic polynomial of A, with
m roots, Ai, Ao, ..., A\, the eigenvalues of A



Eigenvalue problem in matrix form

A € R™*™, eigenvalue problem Ax = Ax (x #+ 0) in matrix form:

AX=XA
A0 . 0
X=[xz .. z, |, A=diag(\,...., \n) = O )\2 O
IR

e X is the eigenvector matrix, A is the (diagonal) eigenvalue matrix
e If column vectors of X are linearly independent, then X is invertible

A=XAX",

the eigendecomposition of A (compareto A=LU, A=QR)
Rule “determinant of product = product of determinants” implies

det(AX)=det (X A)=det(A)=det(A) (fordet(X)#0).




Algebraic, geometric multiplicity

Definition 1. The algebraic multiplicity of an eigenvalue )\ is the number of times it appears
as a repeated root of the characteristic polynomial p(\) =det(A — A1)

Example. p(A) = A(A — 1)(\ — 2)* has two single roots A\; =0, Ao = 1 and a repeated root
A3.4=2. The eigenvalue A =2 has an algebraic multiplicity of 2

Definition 2. The geometric multiplicity of an eigenvalue \ is the dimension of the null space

of A—\I

Definition 3. An eigenvalue for which the geometric multiplicity is less than the algebraic
multiplicity is said to be defective

Theorem. A matrix is diagonalizable if the geometric multiplicity of each eigenvalue is equal
to the algebraic multiplicity of that eigenvalue.



SVD

e SVD of A€ R™*" reveals: rank(A), bases for C(A), N(A"), C(A"), N(A)

r

m A | = =
] ;
o \( o
\ N



Computing the SVD, reduced SVD, pseudoinverse

From A=U XV obtain

B=AA"=UXX'U"=UA,U"= BU=UA,,

Singular vectors U are eigenvectors of B=A A’

C=ATA=VI'IVI=VA,VI=CV=VA,

Singular vectors V' are eigenvectors of C = AT A
For A € R™*" the reduced SVD is

UTZTWT:A:Z Jjuj’v]T

g=1

U=[u .. u.|,V,=[v; ... v.], 2, =diag(oy,...

707“)7

Pseudoinverse of A c R™*"is AT =V XU’ €e R"*™ (pinv(A) in Matlab)

Solution to Ax=bisx=A"b
Solution to ming ||b— Ax|isxz=A"b



SVD applications

e SVD relevant for correlations: N measurements of x(t) € R™ at ¢4, ..., ty
X=[z x .. x,]cRV*"

Choose origin such that F|x] =0, construct covariance matrix

xi riz, Tz ... iz,

T T T T
Cx=X'X=| "7 |z o ... &, |=| 727 7272~ 2o

xl rlx, xlx, ... xzlx,

Eigenvectors of C' are singular vectors V of X = UX V' = image compression, graph
partition, social networks, data analysis
e Correlations arise often in applications, e.g., images, time series.



Applications: PageRank

e PageRank was the original Google search algorithm
e Construct graph with edges weighted by number of links
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Figure 1. Graph of interlinked web sites

e Form transition matrix, A= |a;;|, a;; weighted number of links to j from i. Weight chosen
such that ) a;;=1. Solve Ax ==, x = [1;], 7; relative importance of node .
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Applications: Finite element models (FEM) of structures

e Spring Hooke law: f = ku, force is linear in displacement

e Multiple connected springs

o w ~N Lo

e Structure can be described in either force coordinates or displacement coordinates. Change

of coordinates: Ku = f.

k(ll
K MW &
1 @ i 5
VVVY *IZ) 3 k()l VVVU e
() AAAA (5)

- I\/\Mf t Bty
Fy e @ s 0 - Fs
- —_— -~
£ F; Fy

={F)
[K){u} ={F}
1 2 3 4 5
NeTwud '.L.'.'.‘.'.'.'.'.'.'.‘.'.'.'.'.‘.'.'_'.:: ”l
o,
................... l’}
______ “,
“,

Figure 2. Stiffness matrix example.
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Figure 3. Finite element model of wind turbine with color-coded internal forces (stress) due to

action.

Applications: Realistic FEM example

Stress
von Mises
IbMiin*2)
22828.34
2054551
1826268
15979.84
13697.01
1141417
9131.328
6848.503
4565.669
2282834

1.903628e-012

wind



Applications: predator-prey, resource-consumption models
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(A) Predation matrix showing size-structured feeding interactions as upper triangularity. Points indicate a trophic
link between predator and prey (arranged by increasing body mass from left to right and top to bottom). The line
with a slope of A 1 illustrates instances where the biomass of consumers and resources is equivalent
(cannibalism). (B) Trivariate relationship between abundance (N), body mass (M) and food-web structure with
energy flowing from small, more abundant taxa to larger, less abundantly occurring species. Regression line
shown in black; y 14 A 1.18 x A 1.33, r 2 14 0.55.

Figure 4. Form matrix A of which resource is used by which consumer ordered by value (e.g., biomass).
Find most important consumption patterns in ecosystem by SVD, UX VT’ = A. Determine most
prevalent consumption behavior by least squares.



(L] Applications: model reduction

e Given some complicated model, find most important behavior
e Organize model into a matrix A, compute truncated SVD U, X, V! =~ A

Atomistic SOM Coarse-grained SOM
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._....._....._a..
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Figure 5. Extracting important behavior of a complex biomolecule from thermal background



