MATH347: Mid-term Review

Overview

e Vectors and matrices
linear combinations
Matrix operations

Linear transformations

Linear system, Gaussian elimination, similarity transforms, row-echelon form
Matrix inverse, Gauss-Jordan

Vector space, linear dependence, linear independence

Matrix vector spaces

Vector space basis, dimension

Vector space sum, direct sum. Fundamental theorem of linear algebra

e Gram-Schmidt orthonormalization
e Factorizations: LU, QR



Vectors and matrices

e A vector is a grouping of m scalars

v=| [ [€S™ v €S, usually S =R.

e An m by n matrix is a grouping of n vectors,
A=[a, ay ... a,|€S™ " usually S™*"=Rm*"

where each vector has m scalar components ay, as, ..., a, € 5™, usually R™.
e Matrix components with indices taking values : € {1,...,m},j€{1l,...,n}

A€ ]Rmxn, A= [CLZ']']



| inear combinations 3/24

e Linear combination. Let o, €S, u,v € ). Define a linear combination of two vectors by
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e Linear combination of n vectors
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Matrix operations: addition scaling
e The sum of matrices A, B € R"*"

A=la; |, B=1b; ;]

is the matrix C' = A + B with components
C = ¢l cij=ai;+bi;
e The scalar multiplication of matrix AcR"™*" by a€Ris B=a A
A =lai ], B=bi;|=|oai]
e (A+B)+C=A+(B+C),A+B=B+ A



Matrix operations: matrix-vector, matrix-matrix multiplication

Matrix-vector multiplication=linear combination (b€ R™ A € R™*" x € R")

b=Ax=xa,+ 2205+ -+ x,0,=

T1a11 + ToQ12+ -+ + Tplip
T1Q91 + Lol + -+ + Tplop

| L10m1 + ToGm2 + *++ + Tnlmn i

Matrix-matrix multiplications B=A X (BcR"™*?, Ac R™*" X € R"*P)

B:[bl bp]:A[azl

x,|=| Az, ... Az, ]

Vectors are single-column matrices, b € IR™ is shorthand for b € R *!

Matrix multiplication is associative

(AB)C = A(BC)

Matrix multiplication is not commutative, i.e., there do exist A, B such that

AB+BA




Row organization - transposition

Grouping of m scalars into a column vector v is an arbitrary choice

v=|  |eS™* y;eS, usually S =1R.

Introduce transposition to switch between the two groupings

vi=[v vy ... v, €S v; €S, usually S =1R.

A preferred type of grouping is useful in calculations

Preferred grouping: column vectors such that v € 5™ is understood to signify a column
vector. When explicitly required, write v € S*!

inear combination of row vectors

T T T
b =xiai + 2903 + -+ 2,0l



“Rows over columns’ matrix multiplication rule

e Matrix-vector multiplication has been introduced as

1011 + ToG12+ -+ + Tpa1p

T1G21 + Tolo2 + *++ + Tpao
b:Am:x1a1+x2a2—|—---—|—xnan: . neen

| L10m1 + Tolm2 + -+ + Tnlmn _

e Matrix-vector multiplication can be seen a “rows over columns rule”

Ax=[a; ay ... a,]| 7 |=xr101+ 2202+ - + 200,

e "Rows over columns” also works for components

ail Qi -0 Aip T T1a11 + ToQ12 + -+ + Tplin
g1 Q2o -+ A9y T2 T1Q921 + ToQoa + -+ + Tplon
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Am1 Am2 *° Amn Ln | L10m1 + ToGm2 + -+ + Tnlmn |



Matrix operations: scalar product, norm, transpose

e Scalar product: u,v € R"™, uTv:u-v:u1v1+u2v2+ o+ U U,
e 2-norm: u € R”, |lu| = (u”u)'/?
e Angle between two vectors:
viw
cos(f) =
[o]] ]
e Transpose: swap between rows and columns A=[a; ... a, |
aip a1z - Qin air d21 - Anl
a CI/ v oo a a CI/ v oo a
B U i A B R
| Am1l Qm2  Amn | A1m Q2m 0 Anpm

e Linear combination of rows as vector-matrix product

b" =ziaf + 100 + -+ 2,0 =T AT

e Transposition of product (multiple linear combinations): (A B)! = B* A"




Matrix operations: block operations

Matrices often exhibit some intrinsic structure, for example

SHALE

A, DecR*** B, C,E,FecR™ " (other structures possible)
Addition over compatible block dimensions

[BC| [EF) [B+E C+F
A+D_[C B]+[F E]_[C+F B+E]

Multiplication, “row over columns” for compatible block dimensions

St

BE+CF BF+CFE
C B|| F E

CE+BF CF+BE

Matrix block transposition

|



linear transformations

e T:R"™— IR™, mapping of vectors in IR" to vectors in R"™
e Of special interest: linear mappings that preserve linear combinations

T(au+ fv)=aT(u)+ BT (v)
e Matrix B of linear transformation
T(v)=T(ve1+ - +v,e,)=viT(e)+ - +v,T(e,)
B=[T(e) T(e3) ... T(e,) |eR™*"
T(v)=Bwv
e Consider two successive linear mappings S: RP — R", T:IR" — IR™
v=5S(u)=Au,w=T(v)=Bv
e Linear mapping composition, U:IRP —R™, U=T0o S
w=Cu=U(u)=T(S(u))=T(Au)=BAu=C=BA

Matrix of composition is matrix product of individual mappings.



Common linear transformations

e Stretching, TR — R"™, T(v) = Awv

A0 o0
PR
0 0 o A

e Orthogonal projection of v € R™ along w € R™, ||u||=1, T(v)=P,v

P,=uu’

e Reflection across vector w € R™, ||w|| =1, T(v) = Rv

R=2ww! —1T
e Rotation in R?

Re):[ cosf) —sinb ]

sinf cos®



Linear systems, Gaussian elimination

e Component form

)
a11 21+ @192+ -+ + a1, = b1
a91 L1+ a29To + -+ + Aopxy, = by

L dm1 L1 + Um2Ta +  F ATy = by

e Matrix form Axz=b, Ac R"*", x€R", be R
e Simple systems:

— A diagonal
— A triangular
e Solve Ax = b by bringing to simpler form. Gaussian elimination: triangular
(
T1+2x9— 13 = 2 T+ 2wy — a3 = 2 T1+2x—23 = 2
2I1—x2+x3 — 27 _5I2+3$3 — _27< _5xff—3x3 — —121
3xi—r0—w3 = 1 —Tx9+2x3 = —5 —?QjB — _?
\




Gaussian elimination = sequence of similarity transformations

e Work with bordered matrix

1 2 —1 2
2 -1 1 2
3 -1 -1 1

1 2 -1
0 -5 3
0 -7 2

e (Can obtain no, unique, infinite solutions

\

e Analyze by bring to reduced row echelon form

( $1—|—2£E2—|—3$3 =3

< ro+x3 =1 Infinite, <

=0

— All zero rows are below non-zero rows
— First non-zero entry on a row is called the leading entry

— In each non-zero row, the leading entry is to the left of lower leading entries
— Each leading entry equals 1 and is the only non-zero entry in its column

5 1 2 -1 92 |
o0 -5 3 -2
11 11

_5 0 0 —— —
1| 5 5

( $1—|—2£E2—|—3$3 =3
ro+x3 =1 None
0 =1




Gaussian multiplier matrix and its inverse

e Step k in Gaussian elimination can be seen as multiplication with

0
0
1

. —Jk+1$ cee
. _Jk+2k cee

[
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o AcR™* ™ is invertible if there exists X € IR™*"™ such that
AX=XA=1

e Notation X = A~!, is the inverse of A.

. lk+1$ cee
. lk+2k cee




Matrix inverse: existence, computation, operations

When does a matrix inverse exist? A € R™*™
a A invertible

b Ax=0>b has a unique solution for all b€ R™
C

d

e

Ax =0 has a unique solution

The reduced row echelon form of A is I
A can be written as product of elementary matrices

a=b=>c=>d=ec=a
e X isinverseif AX =1 or

Alx) 3 ... ©, |=|Ax; Axy, ... Az, |=| € e
e Gauss-Jordan: similar to Gauss elimination
A | I]~[T ] X |

° (AB)—lzB—l A_l, (AT)_lz (A—1>T

em |



e The vectors a, as, ..

Vector spaces, linear dependence

Addition rules for Va,b,cecV
at+beV Closure

a+ (b+c)=(a+b)+ c | Associativity
a+b=b+a Commutativity
O+a=a Zero vector
a+(—a)=0 Additive inverse
Scaling rules for Va,beV,Vr,yes
racV Closure

r(a+b)=zra+zb

Distributivity

(r+ya=zra+ya

Distributivity

z(ya) = (ry)a

Composition

la=a

Scalar identity

at least one of which is different from zero such that

e The vectors aq, as, ..

that satisfy

rai+ ... r,Q, = 0

., a, <€)V, are linearly independent if the only n scalars, x4, .

ria1+..x,a, =0, arer1=29=--=2,=0

., a, €YV, are linearly dependent if there exist n scalars, z1,...,2, €S,

L Tn €S,



Vector space basis and dimension, matrix subspaces

A set of vectors uq,...,u,, €V is a basis for vector space V if:
1 wq,...,u, are linearly independent;
2 span{uy,...,u,}=V.
The number of vectors w4, ..., u,, € V within a basis is the dimension of the vector space V.

The column space (or range) of matrix A € R™*" is the set of vectors reachable by linear
combination of the matrix column vectors

C(A)=range(A)={beR™| dJx € R"suchthatb=Ax} CR™

Left null space, N(A")={y e R"™| ATy=0} CIR™, the part of R™ not reachable by linear
combination of columns of A
The null space of a matrix A € R™*"™ is the set

N(A)=null(A)={xcR"Ax=0} CR"
The row space of A as

R(A)=C(A")={ceR"dy € R"suchthatc= ATy} CR"



Direct sum, intersection of vector spaces

Given two vector subspaces (U, S, +), (V,S,+) of the space (W, S, +), the sum is the
sstU +V={u+v|lucld,veV}.

Given two vector subspaces (U, S,+), (V,S,+) of the space (W, S, +), the direct sum is
theset U &V ={u+v|3luecld,3veV}. (unique decomposition)

Given two vector subspaces (U, S, +), (V,S,+) of the space (W,S,+), the intersection
is the set

UNV={xlxcld,xcV}.

Two vector subspaces (U/,S,+), (V,S,+) of the space (WW,S,+) are orthogonal subspaces,
denoted U/ LV if u'v =0 foranyucld,vec .

Two vector subspaces (U, S,+), (V,S,+) of the space (W, S, +) are orthogonal comple-
ments, denoted U/ =V, V=U+if ULV and U +V =WV

Orthogonal complement subspaces form a direct sum U =V+, V=U"' =

U+YV=UDYV



¥
R"=C(A")® N(A) wusually:m>n R"™"=N(A" & C(A)
C(AT)LN(A) N(AT)LC(A)



Gram-Schmidt orthonormalization

e A=Q R, (Q orthogonal, R triangular

11 T12 T'1in
0 r Ton
A=[a, ay ... a,]=[q1 @ ... q,] - " |=QR
0 0 Trnn |
e Identify on both sides to obtain
a; =rTr114q1 Q1=a1/7“11

as="124q1 1+ 722 Q>

=(ay,—1r r
as=7m13q1+ 723 g2+ 1733 g3 0= (a; 1241) /722

q3:(a3—r13q1—fr23q2)/r33

A, =T1nq1+t+ 72,92+ 73,93+ - + TnnqQn



Solving Ax = b by Gaussian elimination

e Gaussian elimination produces a sequence matrices similar to A € R"*"™

A=A0 o AD ~ ... 0 AB) . o A1)

e Step k produces zeros underneath diagonal position (%, k)
e Step k can be represented as multiplication by matrix

(1 0 1)
0 . 0 0
(k) (k—1) 0 1 0 afy ! k) ()
o 1 o g, L
A _LkA 7Lk_ 0 ... _lk:+1 Eo--- 0 Jj’k_ a(k—1)7A [ai’j]
’ k.k

0l 1

e All m — 1 steps produce an upper triangular matrix

L, 1.LyLiA=U=A=L{'Ly'.. L' U=LU

e With permutations PA = LU (Matlab [L,U,P]=1u(A), A=P’xLxU)



Matrix formulation of Gaussian elimination

e With known [ U-factorization: Ax =b= (LU )x = Pb=-L (Ux)= Pb
e To solve Ax =b:
1 Carry out LU-factorization: P' LU = A
2 Solve Ly = c= Pb by forward substitution to find y
3 Solve Ux = y by backward substitution
e FLOP = floating point operation = one multiplication and one addition
e Operation counts: how many FLOPS in each step?
1 Each L, A%~V costs (m — k)?> FLOPS. Overall
m(m—1)2m —1) m?

(m—1)*+(m—2)2+-+1*= ; ~

2 Forward substitution step k costs k flops

m(m+1) _m?

2 T 9

3 Backward substitution cost is identical m(m+1)/2~m?/2/



Gram-Schmidt as Q R

e Orthonormalization of columns of A is also a factorization

11 T12 ... Tin
0 o2 ... T2
A:[al as ... an]:[(h q> ... qn] : . n :QR
0 0 o |
a=r
1 11 q1 q, = a1/7“11

as="12q1 1+ 722 Q2

=(az—7 r
a3z =113q1 1+ 723921733 q3 0= (02— 71241) /72

q3:(a3—r13q1—r23q2)/7“33
an:rlnq1+r2nq2+r3nq3+"'_'_rnnqn

e Operation count:

— Tjp= qfak costs m FLOPS

— There are 1 +2+ --- 4+ n components in R, Overall cost n(n+1)m /2
e With permutations AP = Q R (Matlab [Q,R,P]=qr(A) )



Solving linear Ax=b, A € R"™*"™ systems by Q R

e With known Q R-factorization: Az =b= (QRP")zx=b= Ry=Q"'b
e To solve Ax =b:

1 Carry out (Q R-factorization: Q RP' =A

2 Compute c=Q'b

3 Solve Ry = c by backward substitution

4 Findx=Ply
e Operation counts: how many FLOPS in each step?

1 @ R-factorization m*(m+1)/2~m?/2

2 Compute ¢, m?

3 Backward substitution m(m+1)/2~m?*/2
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