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Overview

• Vectors and matrices
• Linear combinations
• Matrix operations

• Linear transformations
• Linear system, Gaussian elimination, similarity transforms, row-echelon form

• Matrix inverse, Gauss-Jordan

• Vector space, linear dependence, linear independence

• Matrix vector spaces

• Vector space basis, dimension

• Vector space sum, direct sum. Fundamental theorem of linear algebra

• Gram-Schmidt orthonormalization
• Factorizations: LU , QR



Vectors and matrices 2/24

• A vector is a grouping of m scalars

v =









v1

v2
···

vm









∈Sm, vi∈S, usuallyS =R.

• An m by n matrix is a grouping of n vectors,

A = [ a1 a2 ... an ]∈Sm×n, usuallySm×n =R
m×n

where each vector has m scalar components a1,a2, ...,an∈Sm, usually R
m.

• Matrix components with indices taking values i∈{1, ...,m}, j ∈{1, ..., n}

A∈R
m×n,A = [aij]



Linear combinations 3/24

• Linear combination. Let α, β∈S, u,v∈V . Define a linear combination of two vectors by

w = α u + β v =









α u1

α u2
···

α um









+









β v1

β v2
···

bβ vm









=









α u1 + β v1

α u2 + β v2
···

α um + β vm









=









w1

w2
···

wm









• Linear combination of n vectors

b= x1a1 + x2a2 + ···+ xnan =









x1a11+ x2a12+ ···+ xna1n

x1a21+ x2a22+ ···+ xna2n
···
x1am1 + x2am2 + ···+ xnamn









b= x1









a11

a21

···
am1









+ x2









a12

a22

···
am2









+ ···+ xn









a1n

a2n

···
amn











Matrix operations: addition scaling 4/24

• The sum of matrices A,B ∈R
m×n

A = [ai,j],B = [bi,j]

is the matrix C = A+ B with components

C = [ci,j], ci,j = ai,j + bi,j

• The scalar multiplication of matrix A∈R
m×n by α∈R is B = αA

A = [ai,j],B = [bi,j] = [αai,j]

• (A + B)+ C = A+ (B + C), A+ B = B + A



Matrix operations: matrix-vector, matrix-matrix multiplication 5/24

• Matrix-vector multiplication=linear combination (b∈R
m,A∈R

m×n,x∈R
n)

b= Ax= x1a1 + x2a2 + ···+ xnan =









x1a11+ x2a12+ ···+ xna1n

x1a21+ x2a22+ ···+ xna2n
···
x1am1 + x2am2 + ···+ xnamn









• Matrix-matrix multiplications B = AX (B ∈R
m×p,A∈R

m×n,X ∈R
n×p)

B = [ b1 ... bp ] = A[ x1 ... xp ] = [ Ax1 ... Axp ]

• Vectors are single-column matrices, b∈R
m is shorthand for b∈R

m×1

• Matrix multiplication is associative

(AB)C = A(BC)

• Matrix multiplication is not commutative, i.e., there do exist A,B such that

AB =/ BA



Row organization - transposition 6/24

• Grouping of m scalars into a column vector v is an arbitrary choice

v =









v1

v2
···

vm









∈Sm×1, vi∈S, usuallyS =R.

• Introduce transposition to switch between the two groupings

vT = [ v1 v2 ... vm ]∈S1×m, vi∈S, usuallyS =R.

• A preferred type of grouping is useful in calculations
• Preferred grouping: column vectors such that v ∈ Sm is understood to signify a column

vector. When explicitly required, write v ∈Sm×1

• Linear combination of row vectors

bT = x1a1
T + x2a2

T + ···+ xnan
T



“Rows over columns” matrix multiplication rule 7/24

• Matrix-vector multiplication has been introduced as

b= Ax= x1a1 + x2a2 + ···+ xnan =









x1a11+ x2a12+ ···+ xna1n

x1a21+ x2a22+ ···+ xna2n

···
x1am1 + x2am2 + ···+ xnamn









• Matrix-vector multiplication can be seen a “rows over columns rule”

Ax = [ a1 a2 ... an ]









x1

x2
···

xn









= x1a1 + x2a2 + ···+ xnan

• ”Rows over columns” also works for components

Ax=









a11 a12 ··· a1n

a21 a22 ··· a2n
···

···
···

···
am1 am2 ··· amn

















x1

x2
···

xn









=









x1a11+ x2a12+ ···+ xna1n

x1a21+ x2a22+ ···+ xna2n
···
x1am1 + x2am2 + ···+ xnamn











Matrix operations: scalar product, norm, transpose 8/24

• Scalar product: u,v ∈R
m, uT v = u ·v = u1v1 + u2v2 + ···+ umvm

• 2-norm: u∈R
m, ‖u‖= (uT u)1/2

• Angle between two vectors:

cos(θ) =
vT w

‖v‖ ‖w‖

• Transpose: swap between rows and columns A= [ a1 ... an ]

A=









a11 a12 ··· a1n

a21 a22 ··· a2n

···
···

···
···

am1 am2 ··· amn









,AT =









a11 a21 ··· an1

a12 a22 ··· an2
···

···
···

···
a1m a2m ··· anm









=







a1
T

···
an

T







• Linear combination of rows as vector-matrix product

bT = x1a1
T + x2a2

T + ···+ xnan
T = xT AT

• Transposition of product (multiple linear combinations): (AB)T = BT AT



Matrix operations: block operations 9/24

• Matrices often exhibit some intrinsic structure, for example

A =

[

B C

C B

]

,D =

[

E F

F E

]

A,D ∈R
2m×2n, B ,C ,E ,F ∈R

m×n (other structures possible)

• Addition over compatible block dimensions

A + D =

[

B C

C B

]

+

[

E F

F E

]

=

[

B + E C + F

C + F B + E

]

• Multiplication, “row over columns” for compatible block dimensions

AD =

[

B C

C B

][

E F

F E

]

=

[

BE + CF BF + CE

CE + BF CF + BE

]

• Matrix block transposition

M =

[

U V

X Y

]

,MT =

[

UT XT

V T Y T

]



Linear transformations 10/24

• T :Rn→R
m, mapping of vectors in R

n to vectors in R
m

• Of special interest: linear mappings that preserve linear combinations

T (αu + βv)= αT (u) + βT (v)

• Matrix B of linear transformation

T (v)= T (v1e1 + ···+ vnen)= v1T (e1)+ ···+ vn T (en)

B = [ T (e1) T (e2) ... T (en) ]∈R
m×n

T (v) = Bv

• Consider two successive linear mappings S:Rp→R
n, T :Rn→R

m

v = S(u) = Au,w = T (v)= Bv

• Linear mapping composition, U :Rp→R
m, U = T ◦S

w = Cu= U(u)= T (S(u)) =T (Au)= BAu⇒C = BA

Matrix of composition is matrix product of individual mappings.



Common linear transformations 11/24

• Stretching, T :Rm→R
m, T (v) = Av

A=









λ1 0 ... 0
0 λ2 ... 0
···

···
···

···
0 0 ... λm









• Orthogonal projection of v ∈R
m along u∈R

m, ‖u‖= 1, T (v)= Puv

Pu = uuT

• Reflection across vector w ∈R
m, ‖w‖= 1, T (v)= Rv

R = 2wwT − I

• Rotation in R
2

Rθ =

[

cos θ −sin θ

sin θ cos θ

]



Linear systems, Gaussian elimination 12/24

• Component form














a11x1 + a12x2 + ···+ a1nxn = b1

a21x1 + a22x2 + ···+ a2nxn = b2
···
am1 x1 + am2x2 + ···+ amnxn = bm

• Matrix form Ax = b, A∈R
m×n, x∈R

n, b∈R
m

• Simple systems:
− A diagonal
− A triangular

• Solve Ax = b by bringing to simpler form. Gaussian elimination: triangular







x1 + 2 x2−x3 = 2
2 x1−x2 + x3 = 2
3 x1−x2−x3 = 1

,







x1 + 2 x2−x3 = 2
−5 x2 + 3 x3 = −2
−7 x2 + 2 x3 = −5

,















x1 + 2 x2−x3 = 2
−5 x2 + 3x3 = −2

−
11

5
x3 = −

11

5



Gaussian elimination = sequence of similarity transformations 13/24

• Work with bordered matrix





1 2 −1 2
2 −1 1 2
3 −1 −1 1



∼





1 2 −1 2
0 −5 3 −2
0 −7 2 −5



∼









1 2 −1 2
0 −5 3 −2

0 0 −
11

5
−
11

5









• Can obtain no, unique, infinite solutions










x1 + 2x2 + 3x3 =3

x2 + x3 =1

0 =0

Infinite,











x1 + 2x2 + 3x3 =3

x2 + x3 =1

0 =1

None

• Analyze by bring to reduced row echelon form
− All zero rows are below non-zero rows
− First non-zero entry on a row is called the leading entry
− In each non-zero row, the leading entry is to the left of lower leading entries
− Each leading entry equals 1 and is the only non-zero entry in its column



Gaussian multiplier matrix and its inverse 14/24

• Step k in Gaussian elimination can be seen as multiplication with

Lk =























1 ... 0 ... 1
0 ··· 0 ... 0
0 ... 1 ... 0
0 ... −lk+1,k ... 0

0 ... −lk+2,k ... 0
··· ... ···

···
···

0 ... −lm,k ... 1























,Lk
−1 =























1 ... 0 ... 1
0 ··· 0 ... 0
0 ... 1 ... 0
0 ... lk+1,k ... 0

0 ... lk+2,k ... 0
··· ... ···

···
···

0 ... lm,k ... 1























• A∈R
m×m is invertible if there exists X ∈R

m×m such that

AX = XA = I

• Notation X = A−1, is the inverse of A.



Matrix inverse: existence, computation, operations 15/24

• When does a matrix inverse exist? A∈R
m×m

a A invertible
b Ax = b has a unique solution for all b∈R

m

c Ax =0 has a unique solution
d The reduced row echelon form of A is I
e A can be written as product of elementary matrices

a⇒ b⇒ c⇒ d⇒ e⇒ a

• X is inverse if AX = I or

A[ x1 x2 ... xm ] = [ Ax1 Ax2 ... Axm ] = [ e1 e2 ... em ]

• Gauss-Jordan: similar to Gauss elimination

[ A | I ]∼ [ I | X ]

• (AB)−1 = B−1 A−1, (AT)−1 = (A−1)T



Vector spaces, linear dependence 16/24

Addition rules for ∀a, b, c∈V

a + b∈V Closure

a +(b+ c) = (a + b)+ c Associativity

a + b = b+ a Commutativity

0+ a = a Zero vector

a +(−a) =0 Additive inverse

Scaling rules for ∀a, b∈V , ∀x, y ∈S

xa∈V Closure

x(a + b) = xa + xb Distributivity

(x + y)a =xa + ya Distributivity

x(ya) = (xy)a Composition

1a = a Scalar identity

• The vectors a1,a2, ...,an∈V , are linearly dependent if there exist n scalars, x1, ..., xn∈S,
at least one of which is different from zero such that

x1a1 + ...xnan = 0

• The vectors a1,a2, ...,an∈V , are linearly independent if the only n scalars, x1, ..., xn∈S,
that satisfy

x1a1 + ...xnan =0, arex1 = x2 = ···= xn = 0



Vector space basis and dimension, matrix subspaces 17/24

• A set of vectors u1, ...,un∈V is a basis for vector space V if:
1 u1, ...,un are linearly independent;

2 span{u1, ...,un}=V .

• The number of vectors u1, ...,un∈V within a basis is the dimension of the vector space V .
• The column space (or range) of matrix A∈R

m×n is the set of vectors reachable by linear
combination of the matrix column vectors

C(A)= range(A) = {b∈R
m| ∃x∈R

n such that b = Ax}⊆R
m

• Left null space, N(AT)={y∈R
m|ATy =0}⊆R

m, the part ofRm not reachable by linear
combination of columns of A

• The null space of a matrix A∈R
m×n is the set

N(A)= null(A)= {x∈R
n|Ax= 0}⊆R

n

• The row space of A as

R(A)= C(AT) = {c∈R
n| ∃y ∈R

m such that c = AT y}⊆R
n



Direct sum, intersection of vector spaces 18/24

• Given two vector subspaces (U , S , +), (V , S , +) of the space (W , S , +), the sum is the
set U +V = {u + v | u∈U ,v ∈V}.

• Given two vector subspaces (U ,S ,+), (V ,S ,+) of the space (W ,S ,+), the direct sum is
the set U ⊕V = {u+ v | ∃!u∈U ,∃!v ∈V}. (unique decomposition)

• Given two vector subspaces (U ,S , +), (V ,S , +) of the space (W ,S , +), the intersection
is the set

U ∩V = {x|x∈U ,x∈V}.

• Two vector subspaces (U ,S ,+), (V ,S ,+) of the space (W ,S ,+) are orthogonal subspaces,

denoted U⊥V if uTv = 0 for any u∈U ,v ∈V .

• Two vector subspaces (U ,S ,+), (V ,S ,+) of the space (W ,S ,+) are orthogonal comple-

ments, denoted U =V⊥, V =U⊥ if U⊥V and U +V =W .
• Orthogonal complement subspaces form a direct sum U =V⊥, V =U⊥⇒

U +V =U ⊕V



FTLA 19/24

A:Rn→R
m

R
n = C(AT)⊕N(A) R

m = N(AT)⊕C(A)

n m

usually: m> n

C(AT)

N(A)

C(A)

r

r

N(AT)

n− r

m− r

0

0

x

y

Ay =0

A(x + y)= b

b

x + y

Ax = b

r = rank(A)

C(AT)⊥N(A) N(AT)⊥C(A)

A∈R
m×n



Gram-Schmidt orthonormalization 20/24

• A= QR, Q orthogonal, R triangular

A = [ a1 a2 ... an ] = [ q1 q2 ... qn ]









r11 r12 ... r1n

0 r22 ... r2n

···
···

0 0 ... rnn









= QR

• Identify on both sides to obtain

a1 = r11 q1

a2 = r12 q1 + r22 q2

a3 = r13 q1 + r23 q2 + r33 q3
···
an = r1n q1 + r2n q2 + r3n q3 + ···+ rnnqn

q1 = a1/r11
q2 = (a2− r12 q1)/r22

q3 = (a3− r13 q1− r23 q2)/r33
···



Solving Ax = b by Gaussian elimination 21/24

• Gaussian elimination produces a sequence matrices similar to A∈R
m×m

A= A(0)∼A(1)∼ ···∼A(k)∼ ···∼A(m−1)

• Step k produces zeros underneath diagonal position (k, k)
• Step k can be represented as multiplication by matrix

A(k) = L
k
A(k−1),Lk =



















1 ... 0 ... 1
0 ··· 0 ... 0
0 ... 1 ... 0
0 ... −lk+1,k ... 0
··· ... ···

···
···

0 ... −lm,k ... 1



















, lj ,k =
aj ,k

(k−1)

ak,k
(k−1)

,A(k) = [ai,j
(k)]

• All m− 1 steps produce an upper triangular matrix

Lm−1...L2L1A= U ⇒A= L1
−1L2

−1...Lm−1
−1 U = LU

• With permutations PA = LU (Matlab [L,U,P]=lu(A), A=P’*L*U)



Matrix formulation of Gaussian elimination 22/24

• With known LU -factorization: Ax = b⇒ (LU )x = P b⇒L (Ux) = Pb
• To solve Ax= b:

1 Carry out LU -factorization: P T LU = A

2 Solve Ly = c = Pb by forward substitution to find y

3 Solve Ux= y by backward substitution
• FLOP = floating point operation = one multiplication and one addition
• Operation counts: how many FLOPS in each step?

1 Each Lk A(k−1) costs (m− k)2 FLOPS. Overall

(m− 1)2 + (m− 2)2 + ···+ 12 =
m(m− 1)(2m− 1)

6
≈

m3

3

2 Forward substitution step k costs k flops

1 + 2 + ···+ m =
m(m + 1)

2
≈

m2

2

3 Backward substitution cost is identical m(m + 1)/2≈m2/2/



Gram-Schmidt as QR 23/24

• Orthonormalization of columns of A is also a factorization

A = [ a1 a2 ... an ] = [ q1 q2 ... qn ]









r11 r12 ... r1n

0 r22 ... r2n

···
···

0 0 ... rnn









= QR

a1 = r11 q1

a2 = r12 q1 + r22 q2

a3 = r13 q1 + r23 q2 + r33 q3
···
an = r1n q1 + r2n q2 + r3n q3 + ···+ rnnqn

q1 = a1/r11
q2 = (a2− r12 q1)/r22

q3 = (a3− r13 q1− r23 q2)/r33
···

• Operation count:

− rjk = qj
Tak costs m FLOPS

− There are 1 + 2 + ···+ n components in R, Overall cost n(n + 1)m/2
• With permutations AP = QR (Matlab [Q,R,P]=qr(A) )



Solving linear Ax = b, A∈R
m×m systems by QR 24/24

• With known QR-factorization: Ax = b⇒ (QRP T)x= b⇒Ry = QTb

• To solve Ax= b:
1 Carry out QR-factorization: QRP T =A

2 Compute c = QT b

3 Solve Ry = c by backward substitution

4 Find x = P Ty

• Operation counts: how many FLOPS in each step?

1 QR-factorization m2(m + 1)/2≈m3/2
2 Compute c, m2

3 Backward substitution m(m + 1)/2≈m2/2
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