PRACTICE FINAL EXAMINATION

Solve the following problems (5 course points each). Present a brief motivation of your method of solution. Problems 9 and 10 are optional; attempt them if you wish to improve your midterm examination score.

1. State the matrix product to obtain 3 linear combinations of vectors

$$u = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, v = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix},$$

with scaling coefficients $(\alpha_1, \beta_1) = (1, 1), (\alpha_2, \beta_2) = (-1, 1), (\alpha_3, \beta_3) = (1, -1).$

Solution. The matrix product is C = AB, $C \in \mathbb{R}^{3\times 3}$ (3 linear combinations, each with 3 components), $A = [u \ v] \in \mathbb{R}^{3\times 2}$ (vectors entering into linear combination), $B \in \mathbb{R}^{2\times 3}$ (scaling coefficients of each linear combination)

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}.$$

2. Orthonormalize the vectors

$$m{u} = \left[egin{array}{c} 1 \\ 0 \\ 1 \end{array}
ight], m{v} = \left[egin{array}{c} -1 \\ 0 \\ 1 \end{array}
ight], m{w} = \left[egin{array}{c} 1 \\ 1 \\ -1 \end{array}
ight].$$

Solution. Note that $\mathbf{u}^T \mathbf{v} = \mathbf{u}^T \mathbf{w} = 0$, such that these vector pairs are already orthogonal. Also note that the vector $\mathbf{e}_2 = [0 \ 1 \ 0]^T$ is orthogonal to both \mathbf{u} and \mathbf{v} . Scale vectors to have unit norm

$$oldsymbol{Q} = [egin{array}{ccc} oldsymbol{q}_1 & oldsymbol{q}_2 & oldsymbol{q}_3 \end{array}] = [egin{array}{ccc} oldsymbol{u}/\sqrt{2} & oldsymbol{v}/\sqrt{2} & oldsymbol{e}_2 \end{array}].$$

3. For $x, y \in \mathbb{R}$, expansion of $(x - y)^3$ leads to $(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$. Find the corresponding expansion of $(\mathbf{A} - \mathbf{B})^3$ for $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times m}$.

Solution. Compute, recalling that matrix multiplication is not commutative

$$(A - B)^3 = (A - B)(A^2 - AB - BA + B^2) = A^3 - A^2B - ABA + AB^2 - BA^2 + BAB + B^2 - B^3$$
.

4. Find the projection of **b** onto $C(\mathbf{A})$ for

$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \boldsymbol{A} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Solution. With $A = [a_1 \ a_2]$ note that $b = 2a_1 + a_2$, hence $b \in C(A)$, and the projection of b onto C(A) is b itself.

Alternatively, orthonormalize $\boldsymbol{A} = [\begin{array}{cc} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array}]$ to obtain

$$Q = [\mathbf{q}_1 \ \mathbf{q}_2] = [\mathbf{a}_1/\sqrt{3} \ \mathbf{a}_2/\sqrt{2}].$$

The projection onto $C(\mathbf{A})$ is

$$\boldsymbol{c} = \boldsymbol{Q} \boldsymbol{Q}^T \boldsymbol{b} = \boldsymbol{Q} \left(\boldsymbol{Q}^T \boldsymbol{b} \right) = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \Rightarrow$$

$$\boldsymbol{c} = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} \\ 1/\sqrt{3} & 0 \\ 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2\sqrt{3} \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

5. Find the LU decomposition of

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 5 & 6 \end{array} \right].$$

Solution. Carry out reduction to upper triangular form, noting multipliers used in the process

$$\boldsymbol{L}_1 \boldsymbol{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{bmatrix}.$$

$$L_2L_1A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = U.$$

Find $\mathbf{A} = \mathbf{L}_1^{-1} \mathbf{L}_2^{-1} \mathbf{U} = \mathbf{L} \mathbf{U}$. Compute

$$L = L_1^{-1}L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}.$$

Verify

$$\boldsymbol{L}\boldsymbol{U} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 3 & 5 & 6 \end{bmatrix}. \checkmark$$

6. State the eigenvalues and eigenvectors of $\mathbf{R} \in \mathbb{R}^{2\times 2}$, the matrix describing reflection across the vector $\mathbf{w} = [1 \ 2]^T$.

Solution. From eigenvalue relation $\mathbf{R}\mathbf{x} = \lambda \mathbf{x}$ note that directions not changed by reflection are along \mathbf{w} and orthogonal to \mathbf{w} . Deduce

$$\boldsymbol{x}_1 = \boldsymbol{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \lambda_1 = 1$$

$$\boldsymbol{x}_2 = \boldsymbol{w} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \lambda_2 = -1.$$

7. Compute the eigendecomposition of

$$\mathbf{A} = \left[\begin{array}{ccc} 5/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 5/2 \end{array} \right].$$

Solution. Eigenvalue problem is $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$. Observe that $\mathbf{x}_2 = \mathbf{e}_2 = [0 \ 1 \ 0]^T$, $\lambda_2 = 1$ is an eigenvector, value pair. Compute characteristic polynomial by

$$p(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \lambda - 5/2 & 0 & -1/2 \\ 0 & \lambda - 1 & 0 \\ -1/2 & 0 & \lambda - 5/2 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda - 5/2 & -1/2 \\ -1/2 & \lambda - 5/2 \end{vmatrix} \Rightarrow$$

$$p(\lambda) = (\lambda - 1) \left(\lambda^2 - 5\lambda + \left(\frac{5}{2}\right)^2 - \left(\frac{1}{2}\right)^2\right) = (\lambda - 1)(\lambda^2 - 5\lambda + 6) = (\lambda - 1)(\lambda - 2)(\lambda - 3).$$

The other eigevalues are $\lambda_1 = 2$, $\lambda_3 = 3$. Find eigenvectors by computing bases for eigenspaces $N(\mathbf{A} - \lambda_1 \mathbf{I})$ and $N(\mathbf{A} - \lambda_3 \mathbf{I})$.

$$m{A} - \lambda_1 \, m{I} = \left[egin{array}{ccc} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{array} \right] \sim \left[egin{array}{ccc} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \Rightarrow m{x}_1 = \left[egin{array}{ccc} 1 \\ 0 \\ -1 \end{array} \right]$$

$$m{A} - \lambda_3 \, m{I} = \left[egin{array}{cccc} -1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & -1/2 \end{array}
ight] \sim \left[egin{array}{cccc} -1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}
ight] \Rightarrow m{x}_3 = \left[egin{array}{cccc} 1 \\ 0 \\ 1 \end{array}
ight].$$

8. Find the SVD of

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & -1 \\ 0 & 0 \\ 1 & 1 \end{array} \right].$$

Solution. Matrix has orthogonal columns that are not of unit norm. Construct SVD as

$$\mathbf{A} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 0 \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

9. Find the matrix of the reflection of \mathbb{R}^2 vectors across the vector $\mathbf{u} = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$.

Solution. Let w be the reflection of v across u, w = Rv. Let

$$q = \frac{1}{\|\boldsymbol{u}\|} \boldsymbol{u} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

The projection of v onto the direction of u is $z = qq^Tv$. The travel from v to z is z - v

$$z = v + (z - v).$$

The reflection is obtained by doubling the travel distance

$$w = v + 2(z - v) = 2z - v = (2qq^{T} - I)v.$$

Deduce that the reflection matrix is

$$\boldsymbol{R} = 2\boldsymbol{q}\boldsymbol{q}^T - \boldsymbol{I}.$$

Figure 1.

10. Find bases for the four fundamental spaces of

$$\boldsymbol{A} = \left[\begin{array}{cc} 1 & -1 \\ 0 & 0 \\ 1 & 1 \end{array} \right].$$

Solution. With $\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2] \in \mathbb{R}^{3 \times 2}$, the bases are: $C(\mathbf{A})$: $\{\mathbf{a}_1, \mathbf{a}_2\}$ $N(\mathbf{A}^T)$: $\{\mathbf{e}_2\}$ since \mathbf{e}_2 is orthogonal to both \mathbf{a}_1 and \mathbf{a}_2 $C(\mathbf{A}^T)$: $\{\mathbf{a}_1^T, \mathbf{a}_2^T\}$ $N(\mathbf{A})$: $\{\mathbf{0}\}$