MATH347: Linear algebra for applicationsApril 25, 2025

Practice Final Examination

Solve the following problems (5 course points each). Present a brief motivation of your method of solution. Problems 9 and 10 are optional; attempt them if you wish to improve your midterm examination score.

  1. State the matrix product to obtain 3 linear combinations of vectors

    \(\displaystyle \boldsymbol{u}= \left[ \begin{array}{l} 1\\ 0\\ 1 \end{array} \right], \boldsymbol{v}= \left[ \begin{array}{l} - 1\\ 0\\ 1 \end{array} \right],\)

    with scaling coefficients \((\alpha_1, \beta_1) = (1, 1)\), \((\alpha_2, \beta_2) = (- 1, 1)\), \((\alpha_3, \beta_3) = (1, - 1)\).

    Solution. The matrix product is \(\boldsymbol{C}=\boldsymbol{A}\boldsymbol{B}\), \(\boldsymbol{C} \in \mathbb{R}^{3 \times 3}\) (3 linear combinations, each with 3 components), \(\boldsymbol{A}= \left[ \begin{array}{ll} \boldsymbol{u} & \boldsymbol{v} \end{array} \right] \in \mathbb{R}^{3 \times 2}\) (vectors entering into linear combination), \(\boldsymbol{B} \in \mathbb{R}^{2 \times 3}\) (scaling coefficients of each linear combination)

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll} 1 & - 1\\ 0 & 0\\ 1 & 1 \end{array} \right], \boldsymbol{B}= \left[ \begin{array}{lll} 1 & - 1 & 1\\ 1 & 1 & - 1 \end{array} \right] .\)

  2. Orthonormalize the vectors

    \(\displaystyle \boldsymbol{u}= \left[ \begin{array}{l} 1\\ 0\\ 1 \end{array} \right], \boldsymbol{v}= \left[ \begin{array}{l} - 1\\ 0\\ 1 \end{array} \right], \boldsymbol{w}= \left[ \begin{array}{l} 1\\ 1\\ - 1 \end{array} \right] .\)

    Solution. Note that \(\boldsymbol{u}^T \boldsymbol{v}=\boldsymbol{u}^T \boldsymbol{w}= 0\), such that these vector pairs are already orthogonal. Also note that the vector \(\boldsymbol{e}_2 = \left[ \begin{array}{lll} 0 & 1 & 0 \end{array} \right]^T\) is orthogonal to both \(\boldsymbol{u}\) and \(\boldsymbol{v}\). Scale vectors to have unit norm

    \(\displaystyle \boldsymbol{Q}= \left[ \begin{array}{lll} \boldsymbol{q}_1 & \boldsymbol{q}_2 & \boldsymbol{q}_3 \end{array} \right] = \left[ \begin{array}{lll} \boldsymbol{u}/ \sqrt{2} & \boldsymbol{v}/ \sqrt{2} & \boldsymbol{e}_2 \end{array} \right] .\)

  3. For \(x, y \in \mathbb{R}\), expansion of \((x - y)^3\) leads to \((x - y)^3 = x^3 - 3 x^2 y + 3 x y^2 - y^3\). Find the corresponding expansion of \((\boldsymbol{A}-\boldsymbol{B})^3\) for \(\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times m}\).

    Solution. Compute, recalling that matrix multiplication is not commutative

    \(\displaystyle (\boldsymbol{A}-\boldsymbol{B})^3 = (\boldsymbol{A}-\boldsymbol{B}) (\boldsymbol{A}^2 -\boldsymbol{A}\boldsymbol{B}-\boldsymbol{B}\boldsymbol{A}+\boldsymbol{B}^2) =\boldsymbol{A}^3 -\boldsymbol{A}^2 \boldsymbol{B}-\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}+\boldsymbol{A}\boldsymbol{B}^2 -\boldsymbol{B}\boldsymbol{A}^2 +\boldsymbol{B}\boldsymbol{A}\boldsymbol{B}+\boldsymbol{B}^2 -\boldsymbol{B}^3 .\)

  4. Find the projection of \(\boldsymbol{b}\) onto \(C (\boldsymbol{A})\) for

    \(\displaystyle \boldsymbol{b}= \left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right], \boldsymbol{A}= \left[ \begin{array}{ll} 1 & - 1\\ 1 & 0\\ 1 & 1 \end{array} \right] .\)

    Solution. With \(\boldsymbol{A}= \left[ \begin{array}{ll} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array} \right]\) note that \(\boldsymbol{b}= 2\boldsymbol{a}_1 +\boldsymbol{a}_2\), hence \(\boldsymbol{b} \in C (\boldsymbol{A})\), and the projection of \(\boldsymbol{b}\) onto \(C (\boldsymbol{A})\) is \(\boldsymbol{b}\) itself.

    Alternatively, orthonormalize \(\boldsymbol{A}= \left[ \begin{array}{ll} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array} \right]\) to obtain

    \(\displaystyle \boldsymbol{Q}= \left[ \begin{array}{ll} \boldsymbol{q}_1 & \boldsymbol{q}_2 \end{array} \right] = \left[ \begin{array}{ll} \boldsymbol{a}_1 / \sqrt{3} & \boldsymbol{a}_2 / \sqrt{2} \end{array} \right] .\)

    The projection onto \(C (\boldsymbol{A})\) is

    \(\displaystyle \boldsymbol{c}=\boldsymbol{Q}\boldsymbol{Q}^T \boldsymbol{b}=\boldsymbol{Q} (\boldsymbol{Q}^T \boldsymbol{b}) = \left[ \begin{array}{ll} 1 / \sqrt{3} & - 1 / \sqrt{2}\\ 1 / \sqrt{3} & 0\\ 1 / \sqrt{3} & 1 / \sqrt{2} \end{array} \right] \left( \left[ \begin{array}{lll} 1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}\\ - 1 / \sqrt{2} & 0 & 1 / \sqrt{2} \end{array} \right] \left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right] \right) \Rightarrow\)

    \(\displaystyle \boldsymbol{c}= \left[ \begin{array}{ll} 1 / \sqrt{3} & - 1 / \sqrt{2}\\ 1 / \sqrt{3} & 0\\ 1 / \sqrt{3} & 1 / \sqrt{2} \end{array} \right] \left[ \begin{array}{l} 2 \sqrt{3}\\ \sqrt{2} \end{array} \right] = \left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right] .\)

  5. Find the \(L U\) decomposition of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 1 & 1\\ 2 & 3 & 3\\ 3 & 5 & 6 \end{array} \right] .\)

    Solution. Carry out reduction to upper triangular form, noting multipliers used in the process

    \(\displaystyle \boldsymbol{L}_1 \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 0 & 0\\ - 2 & 1 & 0\\ - 3 & 0 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 1 & 1\\ 2 & 3 & 3\\ 3 & 5 & 6 \end{array} \right] = \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 2 & 3 \end{array} \right] .\)
    \(\displaystyle \boldsymbol{L}_2 \boldsymbol{L}_1 \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & - 2 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 2 & 3 \end{array} \right] = \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{array} \right] =\boldsymbol{U}.\)

    Find \(\boldsymbol{A}=\boldsymbol{L}_1^{- 1} \boldsymbol{L}_2^{- 1} \boldsymbol{U}=\boldsymbol{L}\boldsymbol{U}\). Compute

    \(\displaystyle \boldsymbol{L}=\boldsymbol{L}_1^{- 1} \boldsymbol{L}_2^{- 1} = \left[ \begin{array}{lll} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 0 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 2 & 1 \end{array} \right] = \left[ \begin{array}{lll} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1 \end{array} \right] .\)

    Verify

    \(\displaystyle \boldsymbol{L}\boldsymbol{U}= \left[ \begin{array}{lll} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{array} \right] = \left[ \begin{array}{lll} 1 & 1 & 1\\ 2 & 3 & 3\\ 3 & 5 & 6 \end{array} \right] . \checked\)
  6. State the eigenvalues and eigenvectors of \(\boldsymbol{R} \in \mathbb{R}^{2 \times 2}\), the matrix describing reflection across the vector \(\boldsymbol{w}= \left[ \begin{array}{ll} 1 & 2 \end{array} \right]^T\).

    Solution. From eigenvalue relation \(\boldsymbol{R}\boldsymbol{x}= \lambda \boldsymbol{x}\) note that directions not changed by reflection are along \(\boldsymbol{w}\) and orthogonal to \(\boldsymbol{w}\). Deduce

    \(\displaystyle \boldsymbol{x}_1 =\boldsymbol{w}= \left[ \begin{array}{l} 1\\ 2 \end{array} \right], \lambda_1 = 1\)

    \(\displaystyle \boldsymbol{x}_2 =\boldsymbol{w}= \left[ \begin{array}{l} - 2\\ 1 \end{array} \right], \lambda_2 = - 1.\)

  7. Compute the eigendecomposition of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll} 5 / 2 & 0 & 1 / 2\\ 0 & 1 & 0\\ 1 / 2 & 0 & 5 / 2 \end{array} \right] .\)

    Solution. Eigenvalue problem is \(\boldsymbol{A}\boldsymbol{x}= \lambda \boldsymbol{x}\). Observe that \(\boldsymbol{x}_2 =\boldsymbol{e}_2 = \left[ \begin{array}{lll} 0 & 1 & 0 \end{array} \right]^T\), \(\lambda_2 = 1\) is an eigenvector, value pair. Compute characteristic polynomial by

    \(\displaystyle p (\lambda) = \det (\lambda \boldsymbol{I}-\boldsymbol{A}) = \left| \begin{array}{lll} \lambda - 5 / 2 & 0 & - 1 / 2\\ 0 & \lambda - 1 & 0\\ - 1 / 2 & 0 & \lambda - 5 / 2 \end{array} \right| = (\lambda - 1) \left| \begin{array}{ll} \lambda - 5 / 2 & - 1 / 2\\ - 1 / 2 & \lambda - 5 / 2 \end{array} \right| \Rightarrow\)
    \(\displaystyle p (\lambda) = (\lambda - 1) \left( \lambda^2 - 5 \lambda + \left( \frac{5}{2} \right)^2 - \left( \frac{1}{2} \right)^2 \right) = (\lambda - 1) (\lambda^2 - 5 \lambda + 6) = (\lambda - 1) (\lambda - 2) (\lambda - 3) .\)

    The other eigevalues are \(\lambda_1 = 2\), \(\lambda_3 = 3\). Find eigenvectors by computing bases for eigenspaces \(N (\boldsymbol{A}- \lambda_1 \boldsymbol{I})\) and \(N (\boldsymbol{A}- \lambda_3 \boldsymbol{I})\).

    \(\displaystyle \boldsymbol{A}- \lambda_1 \boldsymbol{I}= \left[ \begin{array}{lll} 1 / 2 & 0 & 1 / 2\\ 0 & 1 & 0\\ 1 / 2 & 0 & 1 / 2 \end{array} \right] \sim \left[ \begin{array}{lll} 1 / 2 & 0 & 1 / 2\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{array} \right] \Rightarrow \boldsymbol{x}_1 = \left[ \begin{array}{l} 1\\ 0\\ - 1 \end{array} \right]\)

    \(\displaystyle \boldsymbol{A}- \lambda_3 \boldsymbol{I}= \left[ \begin{array}{lll} - 1 / 2 & 0 & 1 / 2\\ 0 & 1 & 0\\ 1 / 2 & 0 & - 1 / 2 \end{array} \right] \sim \left[ \begin{array}{lll} - 1 / 2 & 0 & 1 / 2\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{array} \right] \Rightarrow \boldsymbol{x}_3 = \left[ \begin{array}{l} 1\\ 0\\ 1 \end{array} \right] .\)

  8. Find the SVD of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll} 1 & - 1\\ 0 & 0\\ 1 & 1 \end{array} \right] .\)

    Solution. Matrix has orthogonal columns that are not of unit norm. Construct SVD as

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll} 1 / \sqrt{2} & - 1 / \sqrt{2}\\ 0 & 0\\ 1 / \sqrt{2} & 1 / \sqrt{2} \end{array} \right] \left[ \begin{array}{ll} \sqrt{2} & 0\\ 0 & \sqrt{2}\\ 0 & 0 \end{array} \right] \left[ \begin{array}{ll} 1 & 0\\ 0 & 1 \end{array} \right] .\)

  9. Find the matrix of the reflection of \(\mathbb{R}^2\) vectors across the vector \(\boldsymbol{u}= \left[ \begin{array}{ll} 1 & 2 \end{array} \right]^T\).

    Solution. Let \(\boldsymbol{w}\) be the reflection of \(\boldsymbol{v}\) across \(\boldsymbol{u}\), \(\boldsymbol{w}=\boldsymbol{R}\boldsymbol{v}\). Let

    \(\displaystyle \boldsymbol{q}= \frac{1}{\| \boldsymbol{u} \|} \boldsymbol{u}= \frac{1}{\sqrt{5}} \left[ \begin{array}{l} 1\\ 0 \end{array} \right] .\)

    The projection of \(\boldsymbol{v}\) onto the direction of \(\boldsymbol{u}\) is \(\boldsymbol{z}=\boldsymbol{q}\boldsymbol{q}^T \boldsymbol{v}\). The travel from \(\boldsymbol{v}\) to \(\boldsymbol{z}\) is \(\boldsymbol{z}-\boldsymbol{v}\)

    \(\displaystyle \boldsymbol{z}=\boldsymbol{v}+ (\boldsymbol{z}-\boldsymbol{v}) .\)

    The reflection is obtained by doubling the travel distance

    \(\displaystyle \boldsymbol{w}=\boldsymbol{v}+ 2 (\boldsymbol{z}-\boldsymbol{v}) = 2\boldsymbol{z}-\boldsymbol{v}= (2\boldsymbol{q}\boldsymbol{q}^T -\boldsymbol{I}) \boldsymbol{v}.\)

    Deduce that the reflection matrix is

    \(\displaystyle \boldsymbol{R}= 2\boldsymbol{q}\boldsymbol{q}^T -\boldsymbol{I}.\)

    Figure 1.

  10. Find bases for the four fundamental spaces of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll} 1 & - 1\\ 0 & 0\\ 1 & 1 \end{array} \right] .\)

    Solution. With \(\boldsymbol{A}= \left[ \begin{array}{ll} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array} \right] \in \mathbb{R}^{3 \times 2}\), the bases are:

    \(C (\boldsymbol{A})\): \(\{ \boldsymbol{a}_1, \boldsymbol{a}_2 \}\)

    \(N (\boldsymbol{A}^T)\): \(\{ \boldsymbol{e}_2 \}\) since \(\boldsymbol{e}_2\) is orthogonal to both \(\boldsymbol{a}_1\) and \(\boldsymbol{a}_2\)

    \(C (\boldsymbol{A}^T)\): \(\{ \boldsymbol{a}^T_1, \boldsymbol{a}^T_2 \}\)

    \(N (\boldsymbol{A})\): \(\{ \boldsymbol{0} \}\)