This assignment is a worksheet of exercises intended as preparation for
the Final Examination. You should:
-
Find the linear combination of vectors \(\boldsymbol{u}= \left[
\begin{array}{lll}
1 & 1 & 1
\end{array} \right]\),
\(\boldsymbol{v}= \left[ \begin{array}{lll}
1 & 2 & 3
\end{array}
\right]\) with scaling coefficients \(\alpha = 2\), \(\beta = 1\).
Solution. By definition of linear combination
\(\displaystyle \boldsymbol{w}= \alpha \boldsymbol{u}+ \beta
\boldsymbol{v}= 2 \cdot \left[
\begin{array}{lll}
1 & 1 &
1
\end{array} \right] + 1 \cdot \left[ \begin{array}{lll}
1 & 2
& 3
\end{array} \right] = \left[ \begin{array}{lll}
3 & 4 &
5
\end{array} \right] .\)
-
Express the above linear combination \(\boldsymbol{b}\) as a
matrix-vector product
\(\boldsymbol{b}=\boldsymbol{A}\boldsymbol{x}\). Define
\(\boldsymbol{x}\) and the column vectors of \(\boldsymbol{A}=
\left[ \begin{array}{ll}
\boldsymbol{a}_1 &
\boldsymbol{a}_2
\end{array} \right]\).
Solution. Vectors that enter the linear combination
are matrix \(\boldsymbol{A}\) columns, scaling coefficients are
components of \(\boldsymbol{x}\)
\(\displaystyle \boldsymbol{b}=\boldsymbol{A}\boldsymbol{x}=
\left[ \begin{array}{ll}
\boldsymbol{a}_1 &
\boldsymbol{a}_2
\end{array} \right] \left[ \begin{array}{l}
x_1\\
x_2
\end{array} \right] = \left[ \begin{array}{ll}
1 &
1\\
1 & 2\\
1 & 3
\end{array} \right] \left[ \begin{array}{l}
2\\
1
\end{array} \right] = \left[ \begin{array}{l}
3\\
4\\
5
\end{array} \right] .\)
-
Consider \(\boldsymbol{u}= \left[ \begin{array}{lll}
1 & 1 &
0
\end{array} \right]^T\), \(\boldsymbol{v}= \left[
\begin{array}{lll}
1 & 1 & 1
\end{array} \right]^T\). Compute the
2-norms of \(\boldsymbol{u}, \boldsymbol{v}\). Determine the angle
between \(\boldsymbol{u}, \boldsymbol{v}\).
Solution. By definition the 2-norms are
\(\displaystyle \| \boldsymbol{u} \|_2 = \left( \sum_{i = 1}^3 u_i^2
\right)^{1 / 2} =
\sqrt{2}, \| \boldsymbol{v} \|_2 = \left( \sum_{i
= 1}^3 v_i^2 \right)^{1 / 2}
= \sqrt{3} .\)
The cosine of the angle \(\theta\) between \(\boldsymbol{u},
\boldsymbol{v}\) is defined as
\(\displaystyle \cos \theta = \frac{\boldsymbol{u}^T
\boldsymbol{v}}{\| \boldsymbol{u} \|_2 \|
\boldsymbol{v} \|_2} =
\frac{2}{\sqrt{6}} .\)
-
Consider \(\boldsymbol{u}= \left[ \begin{array}{lll}
1 & 1 &
0
\end{array} \right]^T\), \(\boldsymbol{v}= \left[
\begin{array}{lll}
1 & 1 & 1
\end{array} \right]^T\). Define
vector \(\boldsymbol{w}\) such that
\(\boldsymbol{v}+\boldsymbol{w}\) is orthogonal to
\(\boldsymbol{u}\). Write the equation to determine
\(\boldsymbol{w}\), and then compute \(\boldsymbol{w}\).
Solution. Orthogonal vectors satisfy
\(\displaystyle \boldsymbol{u}^T (\boldsymbol{v}+\boldsymbol{w}) =
0,\)
whence
\(\displaystyle \boldsymbol{u}^T \boldsymbol{w}= \left[
\begin{array}{lll}
1 & 1 & 0
\end{array} \right] \left[
\begin{array}{l}
w_1\\
w_2\\
w_3
\end{array} \right] =
-\boldsymbol{u}^T \boldsymbol{v}= - \left[
\begin{array}{lll}
1 &
1 & 0
\end{array} \right] \left[ \begin{array}{l}
1\\
1\\
1
\end{array} \right] = - 2 \Rightarrow w_1 + w_2 = - 2.\)
The above equation has an infinity of solutions, say
\(\displaystyle \boldsymbol{w}= \left[ \begin{array}{l}
- 2\\
0\\
0
\end{array} \right] .\)
Verify:
\(\displaystyle \boldsymbol{v}+\boldsymbol{w}= \left[
\begin{array}{l}
1\\
1\\
1
\end{array} \right] + \left[
\begin{array}{l}
- 2\\
0\\
0
\end{array} \right] = \left[
\begin{array}{l}
- 1\\
1\\
1
\end{array} \right],
\boldsymbol{u}^T (\boldsymbol{v}+\boldsymbol{w}) =
\left[
\begin{array}{lll}
1 & 1 & 0
\end{array} \right] \left[
\begin{array}{l}
- 1\\
1\\
1
\end{array} \right] = 0.
\checked\)
-
Determine \(\boldsymbol{q}_1, \boldsymbol{q}_2\) to be of unit norm
and in the direction of vectors \(\boldsymbol{u},
\boldsymbol{v}+\boldsymbol{w}\) from Ex. 4. Form
\(\hat{\boldsymbol{Q}} = \left[ \begin{array}{ll}
\boldsymbol{q}_1
& \boldsymbol{q}_2
\end{array} \right]\). Compute
\(\hat{\boldsymbol{Q}} \hat{\boldsymbol{Q}}^T\) and
\(\widehat{\boldsymbol{Q} }^T \hat{\boldsymbol{Q}}\).
Solution. By definition of a unit norm vector
\(\displaystyle \boldsymbol{q}_1 = \frac{\boldsymbol{u}}{\|
\boldsymbol{u} \|_2} =
\frac{1}{\sqrt{2}} \left[ \begin{array}{l}
1\\
1\\
0
\end{array} \right], \boldsymbol{q}_2
=
\frac{\boldsymbol{v}+\boldsymbol{w}}{\|
\boldsymbol{v}+\boldsymbol{w} \|_2} =
\frac{1}{\sqrt{3}} \left[
\begin{array}{l}
- 1\\
1\\
1
\end{array} \right],\)
leading to
\(\displaystyle \hat{\boldsymbol{Q}} = \left[ \begin{array}{ll}
1
/ \sqrt{2} & - 1 / \sqrt{3}\\
1 / \sqrt{2} & 1 / \sqrt{3}\\
0 &
1 / \sqrt{3}
\end{array} \right] .\)
Compute products
\(\displaystyle \hat{\boldsymbol{Q}} \hat{\boldsymbol{Q}}^T =
\left[ \begin{array}{ll}
1 / \sqrt{2} & - 1 / \sqrt{3}\\
1 /
\sqrt{2} & 1 / \sqrt{3}\\
0 & 1 / \sqrt{3}
\end{array} \right]
\left[ \begin{array}{lll}
1 / \sqrt{2} & 1 / \sqrt{2} & 0\\
- 1
/ \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}
\end{array} \right] =
\left[ \begin{array}{lll}
5 / 6 & 1 / 6 & - 1 / 3\\
1 / 6 & 5 /
6 & 1 / 3\\
- 1 / 3 & 1 / 3 & 1 / 3
\end{array} \right],\)
a projection matrix onto \(C (\hat{\boldsymbol{Q}})\)
\(\displaystyle \widehat{\boldsymbol{Q} }^T \hat{\boldsymbol{Q}} =
\left[ \begin{array}{lll}
1 / \sqrt{2} & 1 / \sqrt{2} & 0\\
- 1
/ \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3}
\end{array} \right] \left[
\begin{array}{ll}
1 / \sqrt{2} & - 1 / \sqrt{3}\\
1 / \sqrt{2} &
1 / \sqrt{3}\\
0 & 1 / \sqrt{3}
\end{array} \right] = \left[
\begin{array}{ll}
1 & 0\\
0 & 1
\end{array} \right],\)
the identity matrix.
-
Determine vector \(\boldsymbol{q}_3\) orthonormal to vectors
\(\boldsymbol{q}_1, \boldsymbol{q}_2\) from Ex. 5.
Solution. By observation, choose
\(\displaystyle \boldsymbol{q}_3 = \frac{1}{\sqrt{6}} \left[
\begin{array}{l}
- 1\\
1\\
- 2
\end{array} \right] .\)
Verify
\(\displaystyle \boldsymbol{q}_1^T \boldsymbol{q}_3 =
\frac{1}{\sqrt{12}} \left[
\begin{array}{lll}
1 & 1 &
0
\end{array} \right] \left[ \begin{array}{l}
- 1\\
1\\
-
2
\end{array} \right] = 0, \boldsymbol{q}_2^T \boldsymbol{q}_3
=
\frac{1}{\sqrt{18}} \left[ \begin{array}{lll}
- 1 & 1 &
1
\end{array} \right] \left[ \begin{array}{l}
- 1\\
1\\
-
2
\end{array} \right] = 0, \boldsymbol{q}_3^T \boldsymbol{q}_3 =
\frac{1}{6}
\left[ \begin{array}{lll}
- 1 & 1 & - 2
\end{array}
\right] \left[ \begin{array}{l}
- 1\\
1\\
- 2
\end{array}
\right] = 1\)
-
Establish whether vectors \(\boldsymbol{u}= \left[
\begin{array}{lll}
1 & 2 & 3
\end{array} \right]^T\),
\(\boldsymbol{v}= \left[ \begin{array}{lll}
- 3 & 1 & -
2
\end{array} \right]^T\), \(\boldsymbol{w}= \left[
\begin{array}{lll}
2 & - 3 & 1
\end{array} \right]^T\) all lie in
the same plane within \(\mathbb{R}^3\).
Solution. The vectors would have to be linearly
dependent. Form the matrix
\(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll}
\boldsymbol{u} & \boldsymbol{v} & \boldsymbol{w}
\end{array} \right]
= \left[ \begin{array}{lll}
1 & - 3 & 2\\
2 & 1 & - 3\\
3 & -
2 & 1
\end{array} \right] .\)
Carry out reduction to rref
\(\displaystyle \boldsymbol{A} \sim \left[ \begin{array}{lll}
1 &
- 3 & 2\\
0 & 7 & - 7\\
0 & 7 & - 5
\end{array} \right] \sim
\left[ \begin{array}{lll}
1 & - 3 & 2\\
0 & 7 & - 7\\
0 & 0 &
2
\end{array} \right],\)
a matrix of full rank, hence with linearly independent columns,
implying that \(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}\) do
not all lie in the same plane.
-
Determine \(\boldsymbol{v}\) the reflection of vector
\(\boldsymbol{u}= \left[ \begin{array}{ll}
1 &
\sqrt{3}
\end{array} \right]^T\) across vector \(\boldsymbol{w}=
\left[ \begin{array}{ll}
1 & 1
\end{array} \right]^T\).
Solution. Form unit vector
\(\displaystyle \boldsymbol{q}= \frac{\boldsymbol{w}}{\|
\boldsymbol{w} \|} =
\frac{1}{\sqrt{2}} \left[ \begin{array}{l}
1\\
1
\end{array} \right] .\)
The reflection matrix is
\(\displaystyle \boldsymbol{R}= 2\boldsymbol{q}\boldsymbol{q}^T
-\boldsymbol{I}= \left[
\begin{array}{l}
1\\
1
\end{array}
\right] \left[ \begin{array}{ll}
1 & 1
\end{array} \right] -
\left[ \begin{array}{ll}
1 & 0\\
0 & 1
\end{array} \right] =
\left[ \begin{array}{ll}
1 & 1\\
1 & 1
\end{array} \right] -
\left[ \begin{array}{ll}
1 & 0\\
0 & 1
\end{array} \right] =
\left[ \begin{array}{ll}
0 & 1\\
1 & 0
\end{array} \right] .\)
Compute reflection
\(\displaystyle \boldsymbol{R}\boldsymbol{u}= \left[
\begin{array}{l}
\sqrt{3}\\
1
\end{array} \right] .\)
-
Determine \(\boldsymbol{w}\) the rotation of vector
\(\boldsymbol{u}= \left[ \begin{array}{ll}
1 &
\sqrt{3}
\end{array} \right]^T\) by angle \(\theta = - \pi / 6\).
Solution. The rotation matrix is
\(\displaystyle \boldsymbol{R}= \left[ \begin{array}{ll}
\cos
\theta & - \sin \theta\\
\sin \theta & \cos \theta
\end{array}
\right] = \left[ \begin{array}{ll}
\sqrt{3} / 2 & 1 / 2\\
- 1 /
2 & \sqrt{3} / 2
\end{array} \right],\)
and the rotated vector is
\(\displaystyle \boldsymbol{w}=\boldsymbol{R}\boldsymbol{u}=
\left[ \begin{array}{ll}
\sqrt{3} / 2 & 1 / 2\\
- 1 / 2 &
\sqrt{3} / 2
\end{array} \right] \left[ \begin{array}{l}
1\\
\sqrt{3}
\end{array} \right] = \left[ \begin{array}{l}
\sqrt{3}\\
1
\end{array} \right] .\)
-
Compute \(\boldsymbol{z}=\boldsymbol{v}-\boldsymbol{w}\) with
\(\boldsymbol{v}, \boldsymbol{w}\) from Ex. 8,9.
Solution. The difference is
\(\boldsymbol{z}=\boldsymbol{v}-\boldsymbol{w}\) highlighting that
rotation and reflection of a vector can produce the same result.
-
Find two linear combinations of vectors \(\boldsymbol{u}= \left[
\begin{array}{lll}
1 & 1 & 1
\end{array} \right]\),
\(\boldsymbol{v}= \left[ \begin{array}{lll}
1 & 2 & 3
\end{array}
\right]\) first with scaling coefficients \(\alpha = 2\), \(\beta =
1\), and then with scaling coefficients \(\alpha = 1\), \(\beta =
2\).
Solution. Organize the multiple linear combinations
as a matrix-matrix product
\(\displaystyle \boldsymbol{A}\boldsymbol{B}= \left[
\begin{array}{ll}
\boldsymbol{u} & \boldsymbol{v}
\end{array}
\right] \left[ \begin{array}{ll}
2 & 1\\
1 & 2
\end{array}
\right] = \left[ \begin{array}{ll}
1 & 1\\
1 & 2\\
1 &
3
\end{array} \right] \left[ \begin{array}{ll}
2 & 1\\
1 &
2
\end{array} \right] = \left[ \begin{array}{ll}
3 & 3\\
4 &
4\\
5 & 7
\end{array} \right] .\)
-
Express the above linear combinations \(\boldsymbol{B}\) as a
matrix-matrix product
\(\boldsymbol{B}=\boldsymbol{A}\boldsymbol{X}\). Define the column
vectors of \(\boldsymbol{A}, \boldsymbol{X}\).
Solution. As above.
-
Consider \(\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times
m}\). Which of the following matrices are always equal to
\(\boldsymbol{C}= (\boldsymbol{A}-\boldsymbol{B})^2\)?
-
\(\boldsymbol{A}^2 -\boldsymbol{B}^2\)
-
\((\boldsymbol{B}-\boldsymbol{A})^2\)
-
\(\boldsymbol{A}^2 -
2\boldsymbol{A}\boldsymbol{B}+\boldsymbol{B}^2\)
-
\(\boldsymbol{A} (\boldsymbol{A}-\boldsymbol{B})
-\boldsymbol{B}
(\boldsymbol{B}-\boldsymbol{A})\)
-
\(\boldsymbol{A}^2
-\boldsymbol{A}\boldsymbol{B}-\boldsymbol{B}\boldsymbol{A}+\boldsymbol{B}^2\)
Solution. Expand the product taking into account
that matrix multiplication is not commutative
\(\displaystyle \boldsymbol{C}=
(\boldsymbol{A}-\boldsymbol{B})
(\boldsymbol{A}-\boldsymbol{B})
=\boldsymbol{A}^2
-\boldsymbol{B}\boldsymbol{A}-\boldsymbol{A}\boldsymbol{B}+\boldsymbol{B}^2
.\)
Of the possible choices only (b,e) are always equal to
\(\boldsymbol{C}\).
-
Find the inverse of
\(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll}
2 & 1 &
1\\
1 & 2 & 1\\
1 & 1 & 2
\end{array} \right] .\)
Solution. Apply Gauss-Jordan algorithm
\(\displaystyle \left[ \begin{array}{ll}
\boldsymbol{A} &
\boldsymbol{I}
\end{array} \right] = \left[ \begin{array}{llllll}
2 & 1 & 1 & 1 & 0 & 0\\
1 & 2 & 1 & 0 & 1 & 0\\
1 & 1 & 2 & 0 &
0 & 1
\end{array} \right] \sim \left[ \begin{array}{llllll}
1 & 1
/ 2 & 1 / 2 & 1 / 2 & 0 & 0\\
1 & 2 & 1 & 0 & 1 & 0\\
1 & 1 & 2
& 0 & 0 & 1
\end{array} \right] \sim\)
\(\displaystyle \left[ \begin{array}{llllll}
1 & 1 / 2 & 1 / 2 & 1
/ 2 & 0 & 0\\
0 & 3 / 2 & 1 / 2 & - 1 / 2 & 1 & 0\\
0 & 1 / 2 &
3 / 2 & - 1 / 2 & 0 & 1
\end{array} \right] \sim \left[
\begin{array}{llllll}
1 & 1 / 2 & 1 / 2 & 1 / 2 & 0 & 0\\
0 & 1
& 1 / 3 & - 1 / 3 & 2 / 3 & 0\\
0 & 1 / 2 & 3 / 2 & - 1 / 2 & 0 &
1
\end{array} \right] \sim\)
\(\displaystyle \left[ \begin{array}{llllll}
1 & 1 / 2 & 1 / 2 & 1
/ 2 & 0 & 0\\
0 & 1 & 1 / 3 & - 1 / 3 & 2 / 3 & 0\\
0 & 0 & 4 /
3 & - 1 / 3 & - 1 / 3 & 1
\end{array} \right] \sim \left[
\begin{array}{llllll}
1 & 1 / 2 & 1 / 2 & 1 / 2 & 0 & 0\\
0 & 1
& 1 / 3 & - 1 / 3 & 2 / 3 & 0\\
0 & 0 & 1 & - 1 / 4 & - 1 / 4 & 3
/ 4
\end{array} \right] \sim\)
\(\displaystyle \left[ \begin{array}{llllll}
1 & 0 & 0 & 3 / 4 & -
1 / 4 & - 1 / 4\\
0 & 1 & 0 & - 1 / 4 & 3 / 4 & - 1 / 4\\
0 & 0
& 1 & - 1 / 4 & - 1 / 4 & 3 / 4
\end{array} \right] \Rightarrow
\boldsymbol{A}^{- 1} = \left[
\begin{array}{lll}
3 / 4 & - 1 / 4 &
- 1 / 4\\
- 1 / 4 & 3 / 4 & - 1 / 4\\
- 1 / 4 & - 1 / 4 & 3 /
4
\end{array} \right] .\)
Alternatively, notice that
\(\displaystyle \boldsymbol{A}=\boldsymbol{I}- \left[
\begin{array}{l}
- 1\\
- 1\\
- 1
\end{array} \right] \left[
\begin{array}{lll}
1 & 1 & 1
\end{array} \right],\)
and the formula in Ex. 5 below gives
\(\displaystyle \boldsymbol{A}^{- 1} =\boldsymbol{I}+
\frac{\boldsymbol{u}\boldsymbol{v}^T}{1
-\boldsymbol{v}^T
\boldsymbol{u}} =\boldsymbol{I}+ \frac{1}{4}
\left[
\begin{array}{lll}
- 1 & - 1 & - 1
\end{array} \right]
\left[ \begin{array}{l}
1\\
1\\
1
\end{array} \right] = \left[
\begin{array}{lll}
3 / 4 & - 1 / 4 & - 1 / 4\\
- 1 / 4 & 3 / 4 &
- 1 / 4\\
- 1 / 4 & - 1 / 4 & 3 / 4
\end{array} \right] .\)
-
Verify that the inverse of
\(\boldsymbol{A}=\boldsymbol{I}-\boldsymbol{u}\boldsymbol{v}^T\) is
\(\displaystyle \boldsymbol{A}^{- 1} =\boldsymbol{I}+
\frac{\boldsymbol{u}\boldsymbol{v}^T}{1
-\boldsymbol{v}^T
\boldsymbol{u}}\)
when \(\boldsymbol{v}^T \boldsymbol{u} \neq 1\).
Solution. Verify that
\(\boldsymbol{A}\boldsymbol{A}^{- 1} =\boldsymbol{A}^{-
1}
\boldsymbol{A}=\boldsymbol{I}.\)
\(\displaystyle \boldsymbol{A}\boldsymbol{A}^{- 1}
=
(\boldsymbol{I}-\boldsymbol{u}\boldsymbol{v}^T) \left(
\boldsymbol{I}+
\frac{\boldsymbol{u}\boldsymbol{v}^T}{1
-\boldsymbol{v}^T \boldsymbol{u}}
\right)
=\boldsymbol{I}-\boldsymbol{u}\boldsymbol{v}^T
+
\frac{\boldsymbol{u}\boldsymbol{v}^T}{1 -\boldsymbol{v}^T
\boldsymbol{u}} -
\frac{\boldsymbol{u} (\boldsymbol{v}^T
\boldsymbol{u}) \boldsymbol{v}^T}{1
-\boldsymbol{v}^T
\boldsymbol{u}} =\)
\(\displaystyle =\boldsymbol{I}-\boldsymbol{u}\boldsymbol{v}^T +
\frac{1 -\boldsymbol{v}^T
\boldsymbol{u}}{1 -\boldsymbol{v}^T
\boldsymbol{u}}
\boldsymbol{u}\boldsymbol{v}^T =\boldsymbol{I}.
\checked\)
\(\displaystyle \boldsymbol{A}^{- 1} \boldsymbol{A}= \left(
\boldsymbol{I}+
\frac{\boldsymbol{u}\boldsymbol{v}^T}{1
-\boldsymbol{v}^T \boldsymbol{u}}
\right)
(\boldsymbol{I}-\boldsymbol{u}\boldsymbol{v}^T)
=\boldsymbol{I}-\boldsymbol{u}\boldsymbol{v}^T
+
\frac{\boldsymbol{u}\boldsymbol{v}^T}{1 -\boldsymbol{v}^T
\boldsymbol{u}} -
\frac{\boldsymbol{u} (\boldsymbol{v}^T
\boldsymbol{u}) \boldsymbol{v}^T}{1
-\boldsymbol{v}^T
\boldsymbol{u}} =\boldsymbol{I}\)
-
Find \(\boldsymbol{A}^T, \boldsymbol{A}^{- 1}, (\boldsymbol{A}^{-
1})^T,
(\boldsymbol{A}^T)^{- 1}\) for
\(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll}
1 & 0\\
9 & 3
\end{array} \right] .\)
Solution. By definition of transpose
\(\displaystyle \boldsymbol{A}^T = \left[ \begin{array}{ll}
1 &
9\\
0 & 3
\end{array} \right] .\)
Apply Gauss-Jordan
\(\displaystyle \left[ \begin{array}{ll}
\boldsymbol{A} &
\boldsymbol{I}
\end{array} \right] = \left[ \begin{array}{llll}
1
& 0 & 1 & 0\\
9 & 3 & 0 & 1
\end{array} \right] \sim \left[
\begin{array}{llll}
1 & 0 & 1 & 0\\
0 & 3 & - 9 & 1
\end{array}
\right] \sim \left[ \begin{array}{llll}
1 & 0 & 1 & 0\\
0 & 1 &
- 3 & 1 / 3
\end{array} \right] \Rightarrow \boldsymbol{A}^{- 1} =
\left[
\begin{array}{ll}
1 & 0\\
- 3 & 1 / 3
\end{array} \right]
.\)
\(\displaystyle (\boldsymbol{A}^{- 1})^T = \left[ \begin{array}{ll}
1 & - 3\\
0 & 1 / 3
\end{array} \right] = (\boldsymbol{A}^T)^{-
1} .\)
-
Describe within \(\mathbb{R}^3\) the geometry of the column spaces
of matrices
\(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll}
1 & 2\\
0 & 0\\
0 & 0
\end{array} \right], \boldsymbol{B}= \left[
\begin{array}{ll}
1 & 0\\
0 & 2\\
0 & 0
\end{array} \right],
\boldsymbol{C}= \left[ \begin{array}{ll}
1 & 0\\
2 & 0\\
0 &
0
\end{array} \right] .\)
Solution. \(C (\boldsymbol{A})\) is a line since
\(\operatorname{rank} (\boldsymbol{A}) = 1\), \(C (\boldsymbol{B})\)
is a plane, \(\operatorname{rank} (\boldsymbol{B}) = 2\), \(C
(\boldsymbol{A})\) is a line.
-
The vector subspaces of \(\mathbb{R}^2\) are lines, \(\mathbb{R}^2\)
itself and \(Z = \left\{ \left[ \begin{array}{ll}
0 &
0
\end{array} \right]^T \right\}\). What are the vector subspaces of
\(\mathbb{R}^3\)?
Solution. Lines, planes, \(\mathbb{R}^3\) itself
and \(Z = \left\{ \left[ \begin{array}{lll}
0 & 0 & 0
\end{array}
\right]^T \right\}\)
-
Reduce the following matrices to row echelon form
\(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lllll}
1 & 2
& 2 & 4 & 6\\
1 & 2 & 3 & 6 & 9\\
0 & 0 & 1 & 2 & 3
\end{array}
\right], \boldsymbol{B}= \left[ \begin{array}{lll}
2 & 4 & 2\\
0
& 4 & 4\\
0 & 8 & 8
\end{array} \right] .\)
Solution. Obtain
\(\displaystyle \boldsymbol{A} \sim \left[ \begin{array}{lllll}
1
& 2 & 2 & 4 & 6\\
0 & 0 & 1 & 2 & 3\\
0 & 0 & 1 & 2 &
3
\end{array} \right] \sim \left[ \begin{array}{lllll}
1 & 2 & 2 &
4 & 6\\
0 & 0 & 1 & 2 & 3\\
0 & 0 & 0 & 0 & 0
\end{array}
\right]\)
\(\displaystyle \boldsymbol{B} \sim \left[ \begin{array}{lll}
2
& 4 & 2\\
0 & 4 & 4\\
0 & 8 & 8
\end{array} \right] \sim
\left[ \begin{array}{lll}
1 & 2 & 1\\
0 & 1 & 1\\
0 & 1 &
1
\end{array} \right] \sim \left[ \begin{array}{lll}
1 & 2 &
1\\
0 & 1 & 1\\
0 & 0 & 1
\end{array} \right] \sim \left[
\begin{array}{lll}
1 & 0 & - 1\\
0 & 1 & 1\\
0 & 0 &
1
\end{array} \right]\)
-
Determine the null space of
\(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll}
- 1 & 3
& 5\\
- 2 & 6 & 10
\end{array} \right] .\)
Solution. By rref
\(\displaystyle \boldsymbol{A} \sim \left[ \begin{array}{lll}
- 1
& 3 & 5\\
0 & 0 & 0
\end{array} \right],\)
hence \(r =\operatorname{rank} (\boldsymbol{A}) = 1\), with
\(\boldsymbol{A} \in \mathbb{R}^{2 \times 3} =\mathbb{R}^{m \times
n}\). From FTLA \(r + z = n\) with \(z = \dim N (\boldsymbol{A}) =
3\). Two basis vectors for the null space can be chosen as
\(\displaystyle \boldsymbol{u}= \left[ \begin{array}{l}
3\\
1\\
0
\end{array} \right], \boldsymbol{v}= \left[
\begin{array}{l}
8\\
1\\
1
\end{array} \right] .\)