MATH347: Linear algebra for applications

Homework 11 - Solution

This assignment is a worksheet of exercises intended as preparation for the Final Examination. You should:

  1. Review Lessons 13 to 24

  2. Set aside 60 minutes to solve these exercises. Each exercise is meant to be solved within 3 minutes. If you cannot find a solution within 3 minutes, skip to the next one.

  3. Check your answers in Matlab. Revisit theory for skipped or incorrectly answered exercies.

  4. Turn in a PDF with your brief handwritten answers that specify your motivation, approach, calculations, answer. It is good practice to start all answers by briefly recounting the applicable definitions.

When constructing a solution follow these steps:

  1. Ask yourself: “what course concept is being verified?”

  2. Identify relevant definitions and include them in your answer.

  3. Briefly describe your approach

  4. Carry out calculations

  5. Present final answer

1Matrix factorization

  1. State \(\boldsymbol{P} \in \mathbb{R}^{3 \times 3}\) that permutes rows (1,2,3) of \(\boldsymbol{A} \in \mathbb{R}^{3 \times 3}\) as rows (2,3,1) through the product \(\boldsymbol{P}\boldsymbol{A}\).

    Solution. Permute rows of the identity matrix to obtain

    \(\displaystyle \boldsymbol{P}= \left[ \begin{array}{lll} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{array} \right] .\)

  2. Find the inverse of matrix \(\boldsymbol{P}\) from Ex. 1.

    Solution. \(\boldsymbol{P}\) is an orthogonal matrix, hence the inverse is given by its transpose

    \(\displaystyle \boldsymbol{P}^{- 1} =\boldsymbol{P}^T = \left[ \begin{array}{lll} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array} \right]\)

  3. State \(\boldsymbol{Q} \in \mathbb{R}^{3 \times 3}\) that permutes columns (1,2,3) of \(\boldsymbol{A} \in \mathbb{R}^{3 \times 3}\) as columns (3,1,2) through the product \(\boldsymbol{A}\boldsymbol{Q}\).

    Solution. Permute columns of the identity matrix to obtain

    \(\displaystyle \boldsymbol{Q}= \left[ \begin{array}{lll} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{array} \right] .\)

  4. Find the inverse of marix \(\boldsymbol{Q}\) from Ex. 3.

    Solution. \(\boldsymbol{Q}\) is an orthogonal matrix, hence the inverse is given by its transpose

    \(\displaystyle \boldsymbol{Q}^{- 1} =\boldsymbol{Q}^T = \left[ \begin{array}{lll} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array} \right]\)

  5. Find the \(L U\) factorization of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 1 & 1\\ 1 & 2 & 3\\ 1 & 3 & 6 \end{array} \right] .\)

    Solution. Stage 1 multiplier matrix operation gives

    \(\displaystyle \boldsymbol{L}_1 \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 0 & 0\\ - 1 & 1 & 0\\ - 1 & 0 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 1 & 1\\ 1 & 2 & 3\\ 1 & 3 & 6 \end{array} \right] = \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 2\\ 0 & 2 & 5 \end{array} \right]\)

    Stage 2 multiplier matrix operation gives

    \(\displaystyle \boldsymbol{L}_2 \boldsymbol{L}_1 \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & - 2 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 2\\ 0 & 2 & 5 \end{array} \right] = \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{array} \right] =\boldsymbol{U}.\)

    Multiplication by multiplier matrix inverses:

    \(\displaystyle \boldsymbol{A}=\boldsymbol{L}_1^{- 1} \boldsymbol{L}_2^{- 1} \boldsymbol{U}=\boldsymbol{L} \boldsymbol{U}\)

    with

    \(\displaystyle \boldsymbol{L}=\boldsymbol{L}_1^{- 1} \boldsymbol{L}_2^{- 1} = \left[ \begin{array}{lll} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 2 & 1 \end{array} \right] = \left[ \begin{array}{lll} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 2 & 1 \end{array} \right] .\)

  6. Find the \(L U\) factorization of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 1 & 1\\ 1 & 2 & 2\\ 1 & 2 & 3 \end{array} \right] .\)

    Solution. Stage 1 multiplier matrix operation gives

    \(\displaystyle \boldsymbol{L}_1 \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 0 & 0\\ - 1 & 1 & 0\\ - 1 & 0 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 1 & 1\\ 1 & 2 & 2\\ 1 & 2 & 3 \end{array} \right] = \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 1 & 2 \end{array} \right]\)

    Stage 2 multiplier matrix operation gives

    \(\displaystyle \boldsymbol{L}_2 \boldsymbol{L}_1 \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & - 1 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 1 & 2 \end{array} \right] = \left[ \begin{array}{lll} 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{array} \right] =\boldsymbol{U}.\)

    Multiplication by multiplier matrix inverses:

    \(\displaystyle \boldsymbol{A}=\boldsymbol{L}_1^{- 1} \boldsymbol{L}_2^{- 1} \boldsymbol{U}=\boldsymbol{L} \boldsymbol{U}\)

    with

    \(\displaystyle \boldsymbol{L}=\boldsymbol{L}_1^{- 1} \boldsymbol{L}_2^{- 1} = \left[ \begin{array}{lll} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 0 & 1 \end{array} \right] \left[ \begin{array}{lll} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 1 & 1 \end{array} \right] = \left[ \begin{array}{lll} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 1 & 1 \end{array} \right] .\)

  7. Prove that permutation matrices \(\boldsymbol{P}, \boldsymbol{Q}\) from Ex.1,3 are orthogonal matrices.

    Solution. Verify that \(\boldsymbol{P}^T\)\(\boldsymbol{P}=\boldsymbol{I}\) , \(\boldsymbol{Q}^T\)\(\boldsymbol{Q}=\boldsymbol{I}\), use \(\boldsymbol{P}=\boldsymbol{Q}\).

    \(\displaystyle \left[ \begin{array}{lll} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{array} \right] \left[ \begin{array}{lll} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array} \right] = \left[ \begin{array}{lll} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right]\)

  8. Find the \(Q R\) factorization of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll} 0 & 5 & 6\\ 0 & 0 & 9\\ 1 & 2 & 3 \end{array} \right] .\)

    Solution. A row permutation brings \(\boldsymbol{A}\) to upper triangular form

    \(\displaystyle \boldsymbol{P}\boldsymbol{A}= \left[ \begin{array}{lll} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array} \right] \left[ \begin{array}{lll} 0 & 5 & 6\\ 0 & 0 & 9\\ 1 & 2 & 3 \end{array} \right] = \left[ \begin{array}{lll} 1 & 2 & 3\\ 0 & 5 & 6\\ 0 & 0 & 9 \end{array} \right] =\boldsymbol{R}\)

    Since \(\boldsymbol{P}\) is orthogonal, so is it's inverse and obtain

    \(\displaystyle \boldsymbol{A}=\boldsymbol{Q}\boldsymbol{R}, \boldsymbol{Q}=\boldsymbol{P}^T .\)

  9. Find the eigendecomposition of \(\boldsymbol{R} \in \mathbb{R}^{2 \times 2}\), the matrix of reflection across the first bisector (the \(x = y\) line).

    Solution. A unit vector along the first bisector is

    \(\displaystyle \boldsymbol{q}_1 = \frac{1}{\sqrt{2}} \left[ \begin{array}{l} 1\\ 1 \end{array} \right],\)

    and a unit vector orthgonal to the first bisector is

    \(\displaystyle \boldsymbol{q}_2 = \frac{1}{\sqrt{2}} \left[ \begin{array}{l} - 1\\ 1 \end{array} \right],\)

    Reflection across the first bisector of the two vectors above yields

    \(\displaystyle \boldsymbol{R}\boldsymbol{q}_1 =\boldsymbol{q}_1, \boldsymbol{R}\boldsymbol{q}_2 = 0,\)

    hence

    \(\displaystyle \boldsymbol{R} \left[ \begin{array}{ll} \boldsymbol{q}_1 & \boldsymbol{q}_2 \end{array} \right] = \left[ \begin{array}{ll} \boldsymbol{q}_1 & \boldsymbol{q}_2 \end{array} \right] \left[ \begin{array}{ll} 1 & 0\\ 0 & 0 \end{array} \right] \Rightarrow \boldsymbol{R}\boldsymbol{Q}=\boldsymbol{Q}\boldsymbol{\Lambda} \Rightarrow \boldsymbol{R}=\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^T,\)

    the requested (orthogonal) eigendecomposition

  10. Find the SVD of \(\boldsymbol{R} \in \mathbb{R}^{2 \times 2}\), the rotation by angle \(\theta\) matrix.

    Solution. Rotation does not change the norm of a vector hence in the SVD \(\boldsymbol{R}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\) identify \(\boldsymbol{\Sigma}=\boldsymbol{I}\). Write

    \(\displaystyle \boldsymbol{R}=\boldsymbol{R}\boldsymbol{I}\boldsymbol{I}\)

    and identify \(\boldsymbol{U}=\boldsymbol{R}\) (an orthogonal matrix), \(\boldsymbol{\Sigma}=\boldsymbol{I}\) (a diagonal matrix with ordered elements), \(\boldsymbol{V}^T =\boldsymbol{I}\) and orthogonal matrix, the requested SVD.

2Linear algebra problems

  1. Find the coordinates of \(\boldsymbol{b}= \left[ \begin{array}{lll} 6 & 15 & 24 \end{array} \right]^T\) on the \(\mathbb{R}^3\) basis vectors

    \(\displaystyle \left\{ \left[ \begin{array}{l} 1\\ 4\\ 7 \end{array} \right], \left[ \begin{array}{l} 2\\ 5\\ 8 \end{array} \right], \left[ \begin{array}{l} 3\\ 6\\ 9 \end{array} \right] \right\} .\)

    Solution. The above requests solution of system

    \(\displaystyle \boldsymbol{A}\boldsymbol{x}= \left[ \begin{array}{lll} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{array} \right] \boldsymbol{x}=\boldsymbol{b}= \left[ \begin{array}{l} 6\\ 15\\ 24 \end{array} \right] .\)

    By inspection, find

    \(\displaystyle \boldsymbol{x}= \left[ \begin{array}{l} 1\\ 1\\ 1 \end{array} \right] .\)

  2. Solve the least squares problem \(\min_{\boldsymbol{x}} \| \boldsymbol{b}-\boldsymbol{A}\boldsymbol{x} \|\) for

    \(\displaystyle \boldsymbol{b}= \left[ \begin{array}{l} 1\\ 2\\ 3 \end{array} \right], \boldsymbol{A}= \left[ \begin{array}{ll} 3 & - 5\\ - 11 & 21\\ 0 & 0 \end{array} \right] .\)

    Solution. Linear combinations of columns of \(\boldsymbol{A}= \left[ \begin{array}{ll} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array} \right]\) lead to a zero component in the \(x_3\) direction. The best approximation of \(\boldsymbol{b}\) exactly recovers the risft two components

    \(\displaystyle x_1 \left[ \begin{array}{l} 3\\ - 11 \end{array} \right] + x_2 \left[ \begin{array}{l} - 5\\ 21 \end{array} \right] = \left[ \begin{array}{l} 1\\ 2 \end{array} \right],\)

    with solution \(x_1 = 3.875 = 3 \frac{7}{8}\), \(x_2 = 2.125 = 2 \frac{1}{8}\).

  3. Find the line passing closest to points \(\mathcal{D}= \{ (- 2, 3), (- 1, 1), (0, 1), (1, 3), (3, 7) \}\).

    Solution. Form vectors

    \(\displaystyle \boldsymbol{x}= \left[ \begin{array}{l} - 2\\ - 1\\ 0\\ 1\\ 3 \end{array} \right], \boldsymbol{y}= \left[ \begin{array}{l} 3\\ 1\\ 1\\ 3\\ 7 \end{array} \right],\)

    and solve least squares problem \(\min_{\boldsymbol{c}} \| \boldsymbol{A}\boldsymbol{c}-\boldsymbol{y} \|\) to find line \(y (x) = c_0 + c_1 x\).

    \(\displaystyle \min_{\boldsymbol{c}} \left\| \left[ \begin{array}{ll} \boldsymbol{x}^0 & \boldsymbol{x}^1 \end{array} \right] \left[ \begin{array}{l} c_0\\ c_1 \end{array} \right] -\boldsymbol{y} \right\|, \boldsymbol{A}= \left[ \begin{array}{l} 1\\ 1\\ 1\\ 1\\ 1 \end{array} \begin{array}{l} - 2\\ - 1\\ 0\\ 1\\ 3 \end{array} \right] = \left[ \begin{array}{ll} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array} \right] .\)

    The error vector \(\boldsymbol{e}=\boldsymbol{y}-\boldsymbol{A}\boldsymbol{c}\) is minimized when \(\boldsymbol{e}\) is orthogonal to \(\begin{array}{ll} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array}\),

    \(\displaystyle \boldsymbol{A}^T \boldsymbol{e}=\boldsymbol{A}^T (\boldsymbol{y}-\boldsymbol{A}\boldsymbol{c}) = 0,\)

    leading to the normal system

    \(\displaystyle (\boldsymbol{A}^T \boldsymbol{A}) \boldsymbol{c}=\boldsymbol{M}\boldsymbol{c}=\boldsymbol{A}^T \boldsymbol{y}=\boldsymbol{d}.\)

    Compute

    \(\displaystyle \boldsymbol{M}=\boldsymbol{A}^T \boldsymbol{A}= \left[ \begin{array}{lllll} 1 & 1 & 1 & 1 & 1\\ - 2 & - 1 & 0 & 1 & 3 \end{array} \right] \left[ \begin{array}{l} 1\\ 1\\ 1\\ 1\\ 1 \end{array} \begin{array}{l} - 2\\ - 1\\ 0\\ 1\\ 3 \end{array} \right] = \left[ \begin{array}{ll} 6 & 1\\ 1 & 15 \end{array} \right], \boldsymbol{d}= \left[ \begin{array}{lllll} 1 & 1 & 1 & 1 & 1\\ - 2 & - 1 & 0 & 1 & 3 \end{array} \right] \left[ \begin{array}{l} 3\\ 1\\ 1\\ 3\\ 7 \end{array} \right] = \left[ \begin{array}{l} 15\\ 17 \end{array} \right]\)

    with solution \(c_0 = 208 / 89\), \(c_1 = 87 / 89\).

  4. Find an orthonormal basis for \(C (\boldsymbol{A})\) where

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll} 1 & - 2\\ 1 & 0\\ 1 & 1\\ 1 & 3 \end{array} \right] .\)

    Solution. With \(\boldsymbol{A}= \left[ \begin{array}{ll} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array} \right]\), find

    \(\displaystyle \boldsymbol{q}_1 =\boldsymbol{a}_1 / \| \boldsymbol{a}_1 \| = \frac{1}{2} \left[ \begin{array}{l} 1\\ 1\\ 1\\ 1 \end{array} \right] .\)

    Subtract component of \(\boldsymbol{a}_2\) along direction of \(\boldsymbol{q}_1\)

    \(\displaystyle \boldsymbol{v}_2 =\boldsymbol{a}_2 - (\boldsymbol{q}_1^T \boldsymbol{a}_2) \boldsymbol{q}_1 = \left[ \begin{array}{l} - 2\\ 0\\ 1\\ 3 \end{array} \right] - \frac{1}{2} \left[ \begin{array}{l} 1\\ 1\\ 1\\ 1 \end{array} \right] = \frac{1}{2} \left[ \begin{array}{l} - 5\\ - 1\\ 1\\ 5 \end{array} \right]\)

    Divide by norm to obtain second orthonormal vector

    \(\displaystyle \boldsymbol{q}_2 =\boldsymbol{v}_2 / \| \boldsymbol{v}_2 \| = \frac{1}{2 \sqrt{13}} \left[ \begin{array}{l} - 5\\ - 1\\ 1\\ 5 \end{array} \right] .\)

  5. With \(\boldsymbol{A}\) from Ex. 4 solve the least squares problem \(\min_{\boldsymbol{x}} \| \boldsymbol{b}-\boldsymbol{A}\boldsymbol{x} \|\) where

    \(\displaystyle \boldsymbol{b}= \left[ \begin{array}{l} - 4\\ - 3\\ 3\\ 0 \end{array} \right] .\)

    Solution. With \(\boldsymbol{Q}= \left[ \begin{array}{ll} \boldsymbol{q}_1 & \boldsymbol{q}_2 \end{array} \right]\) computed above, find the projection of \(\boldsymbol{b}\) onto \(C (\boldsymbol{A})\)

    \(\displaystyle \boldsymbol{c}=\boldsymbol{Q}\boldsymbol{Q}^T \boldsymbol{b}=\boldsymbol{Q} (\boldsymbol{Q}^T \boldsymbol{b})\)

    The vector \(\boldsymbol{c}\) is within \(C (\boldsymbol{A}) = C (\boldsymbol{Q})\), hence \(\boldsymbol{c}=\boldsymbol{A}\boldsymbol{x}=\boldsymbol{Q}\boldsymbol{R}\boldsymbol{x}\). Find solution of

    \(\displaystyle \boldsymbol{R}\boldsymbol{x}=\boldsymbol{Q}^T \boldsymbol{b}\)

    with solution

    \(\displaystyle \boldsymbol{x}= \left[ \begin{array}{l} - 4\\ 11 \end{array} \right]\)

  6. What is the best approximant \(\boldsymbol{c} \in C (\boldsymbol{A})\) (\(\boldsymbol{A}\) from Ex. 4) of \(\boldsymbol{b}\) from Ex. 5?

    Solution. See above for calculation of \(\boldsymbol{c}\).

  7. Find the eigenvalues and eigenvectors of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll} 2 & - 1\\ - 1 & 2 \end{array} \right] .\)

    Solution. The characteristic polynomial

    \(\displaystyle p (\lambda) = \det (\lambda \boldsymbol{I}- A) = \left| \begin{array}{ll} \lambda - 2 & 1\\ 1 & \lambda - 2 \end{array} \right| = \lambda^2 - 4 \lambda + 3 = (\lambda - 3) (\lambda - 1)\)

    with roots (the eigenvalues) \(\lambda_1 = 3\), \(\lambda_2 = 1\). Find eigenvectors \(\boldsymbol{x}_1\), \(\boldsymbol{x}_2\) from basis nor null spaces of \(\boldsymbol{A}- \lambda_{1, 2} \boldsymbol{I}\)

    \(\displaystyle \left[ \begin{array}{ll} - 1 & - 1\\ - 1 & - 1 \end{array} \right] \sim \left[ \begin{array}{ll} - 1 & - 1\\ 0 & 0 \end{array} \right] \Rightarrow \boldsymbol{x}_1 = \left[ \begin{array}{l} 1\\ - 1 \end{array} \right]\)

    \(\displaystyle \left[ \begin{array}{ll} 1 & - 1\\ - 1 & 1 \end{array} \right] \sim \left[ \begin{array}{ll} 1 & - 1\\ 0 & 0 \end{array} \right] \Rightarrow \boldsymbol{x}_2 = \left[ \begin{array}{l} 1\\ 1 \end{array} \right] .\)

  8. For \(\boldsymbol{A}\) from Ex. 7 find the eigenvalues and eigenvectors of \(\boldsymbol{A}^2\), \(\boldsymbol{A}^{- 1}\), \(\boldsymbol{A}+ 2\boldsymbol{I}\).

    Solution. With \(\boldsymbol{A}\boldsymbol{x}= \lambda \boldsymbol{x}\) compute \(\boldsymbol{A}^2 \boldsymbol{x}=\boldsymbol{A} (\boldsymbol{A}\boldsymbol{x}) =\boldsymbol{A} (\lambda \boldsymbol{x}) = \lambda^2 \boldsymbol{x}\), hence \(\boldsymbol{A}^2\) has same eigenvectors as \(\boldsymbol{A}\) and eigenvalues \(\lambda_1^2 = 9\), \(\lambda_2 = 1\).

    Multiply \(\boldsymbol{A}\boldsymbol{x}= \lambda \boldsymbol{x}\) by \(\boldsymbol{A}^{- 1}\) to find

    \(\displaystyle \boldsymbol{A}^{- 1} \boldsymbol{x}= \frac{1}{\lambda} \boldsymbol{x},\)

    hence \(\boldsymbol{A}^{- 1}\) has same eigenvectors as \(\boldsymbol{A}\), with eigenvalues \(\lambda_1 = 1 / 3\), \(\lambda_2 = 1.\)

    Compute

    \(\displaystyle (\boldsymbol{A}+ 2\boldsymbol{I}) \boldsymbol{x}= (\lambda + 2) \boldsymbol{x}\)

    and find that \(\boldsymbol{A}+ 2\boldsymbol{I}\) has the sam eigenvectors as \(\boldsymbol{A}\) with eigenvalues \(\lambda_1 = 5\), \(\lambda_2 = 3\).

  9. Is the following matrix diagonalizable?

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{lll} 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1 \end{array} \right] .\)

    Solution. The characteristic polynomial is

    \(\displaystyle p (\lambda) = \det (\lambda \boldsymbol{I}-\boldsymbol{A}) = \left| \begin{array}{lll} \lambda - 1 & - 1 & 0\\ 0 & \lambda - 1 & - 1\\ 0 & 0 & \lambda - 1 \end{array} \right| = (\lambda - 1)^3\)

    with eigenvalues \(\lambda = 1\) having an algebraic multiplicity of 3. Find a basis of null space of \(\boldsymbol{A}- \lambda \boldsymbol{I}\)

    \(\displaystyle \boldsymbol{A}- \lambda \boldsymbol{I}= \left[ \begin{array}{lll} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{array} \right] .\)

    From above the null space of \(\boldsymbol{A}- \lambda \boldsymbol{I}\) has dimension of 2 (geometric multiplicity), less than the algebraic multiplicity, and \(\boldsymbol{A}\) is not diagonalizable.

  10. Find the SVD of

    \(\displaystyle \boldsymbol{A}= \left[ \begin{array}{ll} 1 & 2\\ 2 & 4 \end{array} \right] .\)

    Solution. The matrix \(\boldsymbol{A}= \left[ \begin{array}{ll} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{array} \right]\) has \(\boldsymbol{a}_2 = 2\boldsymbol{a}_1\) and therefore \(\operatorname{rank} (\boldsymbol{A}) = 1\). Characteristic polynomial of \(\boldsymbol{A}^T \boldsymbol{A}\) is

    \(\displaystyle \boldsymbol{A}^T \boldsymbol{A}= \left[ \begin{array}{ll} 1 & 2\\ 2 & 4 \end{array} \right] \left[ \begin{array}{ll} 1 & 2\\ 2 & 4 \end{array} \right] = \left[ \begin{array}{ll} 5 & 10\\ 10 & 20 \end{array} \right], p (\lambda) = \det (\lambda \boldsymbol{I}-\boldsymbol{A}^T \boldsymbol{A}) = \left| \begin{array}{ll} \lambda - 5 & - 10\\ - 10 & \lambda - 20 \end{array} \right| = \lambda^2 - 25 \lambda\)

    has roots \(\lambda_1 = 25\), \(\lambda_2 = 0\) and the singular values of \(\boldsymbol{A}\) are therefore \(\sigma_1 = \sqrt{\lambda_1} = 5\), \(\sigma_2 = 0\). Eigenvectors of \(\boldsymbol{A}^T \boldsymbol{A}\) are given by basis vectors of null spaces of \(\boldsymbol{A}^T \boldsymbol{A}- \lambda \boldsymbol{I}\)

    \(\displaystyle \left[ \begin{array}{ll} - 20 & 10\\ 10 & - 5 \end{array} \right] \sim \left[ \begin{array}{ll} - 20 & 10\\ 0 & 0 \end{array} \right] \Rightarrow \boldsymbol{v}_1 = \frac{1}{\sqrt{5}} \left[ \begin{array}{l} 1\\ 2 \end{array} \right]\)

    \(\displaystyle \left[ \begin{array}{ll} 5 & 10\\ 10 & 20 \end{array} \right] \sim \left[ \begin{array}{ll} 5 & 10\\ 0 & 0 \end{array} \right] \Rightarrow \boldsymbol{v}_2 = \frac{1}{\sqrt{5}} \left[ \begin{array}{l} - 2\\ 1 \end{array} \right]\)

    Since \(\boldsymbol{A}^T \boldsymbol{A}=\boldsymbol{A}\boldsymbol{A}^T\) the same eigenvectors are obtained. The SVD \(\boldsymbol{A}=\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\) is given by

    \(\displaystyle \boldsymbol{U}=\boldsymbol{V}= \left[ \begin{array}{ll} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{array} \right], \boldsymbol{\Sigma}= \left[ \begin{array}{ll} 5 & 0\\ 0 & 0 \end{array} \right] .\)