
CHAPTER 1
LINEAR COMBINATIONS

VECTORS AND MATRICES

1. Quantities
1.1. Numbers
Most scientific disciplines introduce an idea of the amount of some entity or property of interest. Furthermore,
the amount is usually combined with the concept of a number , an abstraction of the observation that the two sets
A = {Mary, Jane, Tom} and B= {apple, plum, cherry} seem quite different, but we can match one distinct person to
one distinct fruit as in {Mary→plum, Jane→apple, Tom→cherry}. In contrast we cannot do the same matching
of distinct persons to a distinct color from the set {red, green}, and one of the colors must be shared between two
persons. Formal definition of the concept of a number from the above observations is surprisingly difficult since it
would be self-referential due to the apperance of the numbers “one” and “two”. Leaving this aside, the key concept
is that of quantity of some property of interest that is expressed through a number. Several types of numbers have
been introduced in mathematics to express different types of quantities, and the following will be used throughout
this text:

ℕ. The set of natural numbers, ℕ= {0, 1,2, 3, . . . }, infinite and countable, ℕ+= {1,2, 3, . . . };
ℤ. The set of integers, ℤ= {0,±1,±2,±3, . . . }, infinite and countable;

ℚ. The set of rational numbers ℚ = {p /q,p ∈ℤ,q ∈ℕ+}, infinite and countable;

ℝ. The set of real numbers, infinite, not countable, can be ordered;

ℂ. The set of complex numbers, ℂ= {x + iy ,x ,y ∈ℝ}, infinite, not countable, cannot be ordered.
A computer has a finite amount of memory, hence cannot represent all numbers, but rather subsets of the above
sets. Furthermore, computers internally use binary numbers composed of binary digits, or bits. Many computer
number types are defined for specific purposes, and are osten encountered in applications such as image represen-
tation or digital data acquisition. Here are the main types.

Subsets of ℕ. The number types uint8, uint16, uint32, uint64 represent subsets of the natural numbers
(unsigned integers) using 8, 16, 32, 64 bits respectively. An unsigned integer with b bits can store a nat-
ural number in the range from 0 to 2b−1. Two arbitrary natural numbers, written as ∀i, j ∈ℕ can be added
and will give another natural number, k = i + j ∈ℕ. In contrast, addition of computer unsigned integers
is only defined within the specific range 0 to 2b−1.

octave] i=uint8(15); j=uint8(10); k=i+j

k = 25

octave] i=uint8(150); j=uint8(200); k=i+j

k = 255

octave] k=i-j

k = 0

octave]

Subsets of ℤ. The number types int8, int16, int32, int64 represent subsets of the integers. One bit is used to
store the sign of the number, so the subset of ℤ that can be represented is from 1−2b−1 to 2b−1−1

octave] i=int8(100); j=int8(101); k=i+j

k = 127
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octave] k=i-j

k = -1

octave]

Subsets of ℚ,ℝ,ℂ. Computers approximate the real numbers through the set F of floating point numbers.
Floating point numbers that use b = 32 bits are known as single precision, while those that use b = 64 are
double precision. A floating point number x ∈F is stored internally as x =±.B1B2. . .Bm×2

±b1b2. . .be where Bi,
i=1,. . . ,m are bits within the mantissa of length m, and bj, j =1,. . . ,e are bits within the exponent, along with
signs ± for each. The default number type is usually double precision, more concisely referred to double.
Common constants such as e, π are predefined as double, can be truncated to single, and the number of
displayed decimal digits is controlled by format. The function disp(x) displays its argument x.

octave] format long; disp([e pi])

2.718281828459045 3.141592653589793

octave] disp([single(e) single(pi)])

2.7182817 3.1415927

octave]

The approximation of the reals ℝ by the floats F is characterized by: realmax, the largest float, realmin
the smallest positive float, and eps known as machine epsilon. Machine epsilon highlights the differences
between floating point and real numbers since it is defined as the largest number ϵ ∈F that satisfies 1+ϵ=1.
If ε ∈ℝ of course 1 + ε = 1 implies ε = 0, but floating points exhibit “granularity”, in the sense that over a
unit interval there are small steps that are indistinguishable from zero due to the finite number of bits
available for a float. Machine epsilon is small, and floating point errors can usually be kept under control.
Keep in mind that perfect accuracy is a mathematical abstraction, not encountered in nature. In fields as
sociology or psychology 3 digits of accuracy are excellent, in mechanical engineering this might increase to
6 digits, or in electronic engineering to 8 digits. The most precisely known physical constant is the Rydberg
constant known to 12 digits. The granularity of double precision expressed by machine epsilon is sufficient
to represent natural phenomena.

octave] format short; disp([realmin realmax eps 1+eps])

2.2251e-308 1.7977e+308 2.2204e-16 1.0000e+00

octave]

Within the reals certain operations are undefined such as 1/0. Special float constants are defined to handle
such situations: Inf is a float meant to represent infinity, and NaN (“not a number”) is meant to represent an
undefinable result of an arithmetic operation.

octave] warning("off"); disp([Inf 1/0 2*realmax NaN Inf-Inf Inf/Inf])

Inf Inf Inf NaN NaN NaN

octave]

Complex numbers z ∈ℂ are specified by two reals, in Cartesian form as z =x + iy , x ,y ∈ℝ or in polar form as
z =ρe iθ , ρ,θ ∈ℝ, ρ � 0. The computer type complex is similarly defined from two floats and the additional
constant I is defined to represent −1� = i = e iπ /2. Functions are available to obtain the real and imaginary
parts within the Cartesian form, or the absolute value and argument of the polar form.

octave] z1=complex(1,1); z2=complex(1,-1); disp([z1+z2 z1/z2])

2 + 0i 0 + 1i

octave] disp([real(z1) real(z2) real(z1+z2) real(z1/z2)])

1 1 2 0
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octave] disp([imag(z1) imag(z2) imag(z1+z2) imag(z1/z2)])

1 -1 0 1

octave] disp([abs(z1) abs(z2) abs(z1+z2) abs(z1/z2)])

1.4142 1.4142 2.0000 1.0000

octave] disp([arg(z1) arg(z2) arg(z1+z2) arg(z1/z2)])

0.78540 -0.78540 0.00000 1.57080

octave] I-sqrt(-1)

ans = 0

octave]

Care should be exercised about the cummulative effect of many floating point errors. For instance, in an “irrational”
numerical investigation of Zeno's paradox, one might want to compare the distance SN traversed by step sizes that
are scaled by 1/π starting from one to TN , traversed by step sizes scaled by π starting from π −N

SN =1+
1
π
+

1
π 2 + ⋅ ⋅ ⋅ +

1
π N ,TN =

1
π N +

1
π N−1 + ⋅ ⋅ ⋅ +1.

In the reals the above two expressions are equal, SN =TN , but this is not verfied for all N when using floating point
numbers. Lists of the values π j, for the two orderings j =0, . . . ,N , and j =N , . . . , 0, can be generated and summed.

octave] N=10; S=pi.^(0:-1:-N); T=pi.^(-N:1:0); sum(S)==sum(T)

ans = 1

octave] N=15; S=pi.^(0:-1:-N); T=pi.^(-N:1:0); sum(S)==sum(T)

ans = 0

octave]

In the above numerical experiment a==b expresses an equality relationship which might evaluate as true denoted
by 1, or false denoted by 0.

octave] disp([1==1 1==2])

1 0

octave]

The above was called an “irrational” investigation since in Zeno's original paradox the scaling factor was 2 rather
than π , and due to the binary representation used by floats equality always holds.

octave] N=30; S=2.^(0:-1:-N); T=2.^(-N:1:0); sum(S)==sum(T)

ans = 1

octave]

1.2. Quantities described by a single number
The above numbers and their computer approximations are sufficient to describe many quantities encountered in
applications. Typical examples include:

• the position x ∈ℝ of a point on the unit line segment [0,1], approximated by the floating point number x̃ ∈F,
to within machine epsilon precision, |x − x̃|� ϵ;

• the measure of resistance to change of the rate of motion known as mass, m ∈ℝ, m >0;

• the population of a large community expressed as a float p ∈F, even though for a community of individuals
the population is a natural number, as in “the population of the United States is p = 328.2E6, i.e., 328.2
million”.
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In most disciplines, there is a particular interest in comparison of two quantities, and to facilitate such comparison
a common reference is used known as a standard unit. For measurement of a length L, the meter ℓ =1m is a standard
unit, as in the statement L=10m, that states that L is obtained by taking the standard unit ten times, L=10ℓ . The
rules for carrying out such comparisons are part of the definition of real and rational numbers. These rules are
formalized in the mathematical definition of a field (F , +, ×) presented in the next chapter. Quantities that obey
such rules, i.e., belong to a field, can be used in changes of scale and are called scalars. Not all numbers are scalars
in this sense. For instance, the integers would not allow a scaling of 1:2 (halving the scale) even though 1,2 are
integers.

1.3. Quantities described by multiple numbers
Other quantities require more than a single number. The distribution of population in the year 2000 among the
alphabetically-ordered South American countries (Argentina, Bolivia,..,Venezuela) requires 12 numbers. These are
placed together in a list known in mathematics as a tuple, in this case a 12-tuple P = (p1,p2, . . . ,p12), with p1 the pop-
ulation of Argentina, p2 that of Bolivia, and so on. An analogous 12-tuple can be formed from the South American
populations in the year 2020, sayQ = (q1,q2,...,q12). Note that it is difficult to ascribe meaning to apparently plausible
expressions such as P +Q since, for instance, some people in the 2000 population are also in the 2020 population,
and would be counted twice.

2. Vectors
2.1. Vector spaces
In contrast to the population 12-tuple example above, combining multiple numbers is well defined in operations
such as specifying a position within a three-dimensional Cartesian grid, or determining the resultant of two forces
in space. Both of these lead to the consideration of 3-tuples or triples such as the force ( f1, f2, f3). When combined
with another force (g1,g2,g3) the resultant is ( f1+g1, f2+g2, f3+g3). If the force ( f1, f2, f3) is amplified by the scalar α
and the force (g1,g2,g3) is similarly scaled by β , the resultant becomes

α ( f1, f2, f3)+β(g1,g2,g3)= (αf1,αf2,αf3)+ (βg1,βg2,βg3)= (αf1+βg1,αf2+βg2,αf3+βg3).

It is useful to distinguish tuples for which scaling and addition is well defined from simple lists of numbers. In fact,
since the essential difference is the behavior with respect to scaling and addition, the focus should be on these
operations rather than the elements of the tuple.
The above observations underlie the definition of a
vector space 𝒱 by a set V whose elements satisfy certain
scaling and addition properties, denoted all together
by the 4-tuple 𝒱 = (V , S, +, ⋅). The first element of the
4-tuple is a set whose elements are called vectors. The
second element is a set of scalars, and the third is the
vector addition operation. The last is the scaling oper-
ation, seen as multiplication of a vector by a scalar.
The vector addition and scaling operations must satisfy
rules suggested by positions or forces in three-dimen-
sional space, which are listed in Table ?. In particular,
a vector space requires definition of two distinguished
elements: the zero vector 0∈V , and the identity scalar
element 1∈S.

Addition rules for ∀a ,b ,c ∈V
a +b ∈V Closure
a + (b + c )= (a +b)+ c Associativity
a +b =b + a Commutativity
0+ a = a Zero vector
a + (−a )=0 Additive inverse
Scaling rules for ∀a ,b ∈V , ∀x ,y ∈S
xa ∈V Closure
x(a +b)=xa +xb Distributivity
(x +y )a =xa +ya Distributivity
x(ya )= (xy )a Composition
1a = a Scalar identity

Table 1.1. Vector space 𝒱= (V , S , +, ⋅) properties for arbitrary a , b ,
c ∈V

The definition of a vector space reflects everyday experience with vectors in Euclidean geometry, and it is common
to refer to such vectors by descriptions in a Cartesian coordinate system. For example, a position vector r within
the plane can be referred through the pair of coordinates (x ,y ). This intuitive understanding can be made precise
through the definition of a vector spaceℛ2= (ℝ2,ℝ,+, ⋅), called the real 2-space. Vectors withinℛ2 are elements of
ℝ2=ℝ×ℝ= {(x , y )| x ,y ∈ℝ}, meaning that a vector is specified through two real numbers, r↔ (x ,y ). Addition of
two vectors, q↔ (s, t), r↔ (x ,y ) is defined by addition of coordinates q + r = (s +x , t +v ). Scaling r↔ (x ,y ) by scalar
a is defined by ar↔ (ax ,ay ). Similarly, consideration of position vectors in three-dimensional space leads to the
definition of theℛ3= (ℝ3,ℝ,+, ⋅), or more generally a real m-spaceℛm= (ℝm,ℝ,+, ⋅), m∈ℕ, m >0.
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Note however that there is no mention of coordinates in the definition of a vector space as can be seen from the
list of properties in Table 1.1. The intent of such a definition is to highlight that besides position vectors, many
other mathematical objects follow the same rules. As an example, consider the set of all continuous functions
C(ℝ) = { f | f : ℝ→ℝ }, with function addition defined by the sum at each argument t, ( f + g)(t)= f (t) + g(t), and
scaling by a∈ℝ defined as (a f )(t)=af (t). Read this as: “given two continuous functions f and g , the function f +g
is defined by stating that its value for argument x is the sum of the two real numbers f (t) and g(t)”. Similarly:
“given a continuous function f , the function af is defined by stating that its value for argument t is the product of
the real numbers a and f (t)”. Under such definitions 𝒞0= (C(ℝ),ℝ, +, ⋅) is a vector space, but quite different from
ℛm. Nonetheless, the fact that both 𝒞0 and ℛm are vector spaces can be used to obtain insight into the behavior
of continuous functions from Euclidean vectors, and vice versa.

2.2. Real vector space ℛm

Column vectors. Since the real spacesℛm= (ℝm,ℝ,+, ⋅) play such an important role in themselves and as a guide
to other vector spaces, familiarity with vector operations inℛm is necessary to fully appreciate the utility of linear
algebra to a wide range of applications. Following the usage in geometry and physics, the m real numbers that
specify a vector u ∈ℝm are called the components of u . The one-to-one correspondence between a vector and its
components u ↔ (u1, . . . ,um), is by convention taken to define an equality relationship,

u = [[[[[[[[[[[[[[[[
[[[[
[
[ u1⋅⋅⋅
um ]]]]]]]]]]]]]]]]

]]]]
]
]
, (1.1)

with the components arranged vertically and enclosed in square brackets. Given two vectors u ,v ∈ℝm, and a scalar
a∈ℝ, vector addition and scaling are defined inℛm by real number addition and multiplication of components

u +v = [[[[[[[[[[[[[[[[
[[[[
[
[ u1⋅⋅⋅
um ]]]]]]]]]]]]]]]]

]]]]
]
]
+ [[[[[[[[[[[[[[[[

[[[[
[
[ v1⋅⋅⋅
vm ]]]]]]]]]]]]]]]]

]]]]
]
]
= [[[[[[[[[[[[[[[[

[[[[
[
[ u1+v1⋅⋅⋅
um+vm ]]]]]]]]]]]]]]]]

]]]]
]
]
,au =a [[[[[[[[[[[[[[[[

[[[[
[
[ u1⋅⋅⋅
um ]]]]]]]]]]]]]]]]

]]]]
]
]
= [[[[[[[[[[[[[[[[

[[[[
[
[ au1⋅⋅⋅
aum ]]]]]]]]]]]]]]]]

]]]]
]
]
. (1.2)

The vector spaceℛm is defined using the real numbers as the set of scalars, and constructing vectors by grouping
togetherm scalars, but this approach can be extended to any set of scalars S, leading to the definition of the vector
spaces 𝒮n= (Sn,S, +, ⋅). These will osten be referred to as n-vector space of scalars, signifying that the set of vectors
is V =Sn.

To aid in visual recognition of vectors, the following notation conventions are introduced:

• vectors are denoted by lower-case bold Latin letters: u ,v ;

• scalars are denoted by normal face Latin or Greek letters: a,b,α ,β ;

• the components of a vector are denoted by the corresponding normal face with subscripts as in equation
(1.1);

• related sets of vectors are denoted by indexed bold Latin letters: u1,u2, . . . ,un.

In Octave, successive components placed vertically are separated by a semicolon.

octave] [1; 2; -1; 2]

ans =

1
2
-1
2

octave]

The equal sign in mathematics signifies a particular equivalence relationship. In computer systems such as Octave
the equal sign has the different meaning of assignment, that is defining the label on the lest side of the equal sign
to be the expression on the right side. Subsequent invocation of the label returns the assigned object. Components
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of a vector are obtained by enclosing the index in parantheses.

octave] u=[1; 2; -1; 2]; u

u =

1
2
-1
2

octave] u(3)

ans = -1

octave]

Row vectors. Instead of the vertical placement or components into one column, the components of could have
been placed horizontally in one row � u1 . . . um �, that contains the same data, differently organized. By conven-
tion vertical placement of vector components is the preferred organization, and u shall denote a column vector
henceforth. A transpose operation denoted by a T superscript is introduced to relate the two representations

uT = � u1 . . . um �,

and uT is the notation used to denote a row vector . In Octave, horizontal placement of successive components in a
row is denoted by a space.

octave] uT=transpose(u)

uT =

1 2 -1 2

octave] [1 2 -1 2]

ans =

1 2 -1 2

octave] uT(4)

ans = 2

octave]

Compatible vectors. Addition of real vectors u ,v ∈ℝm defines another vector w =u +v ∈ℝm. The components of
w are the sums of the corresponding components of u and v , wi =ui +vi, for i =1, 2, . . . ,m. Addition of vectors with
different number of components is not defined, and attempting to add such vectors produces an error. Such vectors
with different number of components are called incompatible, while vectors with the same number of components
are said to be compatible. Scaling of u by a defines a vector z =au , whose components are zi =aui, for i=1,2, . . . ,m.
Vector addition and scaling in Octave are defined using the + and ∗ operators.

octave] uT=[1 0 1 2]; vT=[2 1 3 -1]; wT=uT+vT; disp(wT)

3 1 4 1

octave] rT=[1 2]; uT+rT

operator +: nonconformant arguments (op1 is 1x4, op2 is 1x2)
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octave] a=3; zT=a*uT; disp(zT)

3 6 -3 6

octave]

2.3. Working with vectors

Ranges. The vectors used in applications usually have a large number of components, m≫1, and it is important
to become proficient in their manipulation. Previous examples defined vectors by explicit listing of their m com-
ponents. This is impractical for large m, and support is provided for automated generation for osten-encountered
situations. First, observe that Table 1.1 mentions one distinguished vector, the zero element that is a member of any
vector space 0∈V . The zero vector of a real vector space ℛm is a column vector with m components, all of which
are zero, and a mathematical convention for specifying this vector is 0T =� 0 0 . . . 0 �∈ℝm. This notation specifies
that transpose of the zero vector is the row vector with m zero components, also written through explicit indexing
of each component as 0i =0, for i =1, . . . ,m. Keep in mind that the zero vector 0 and the zero scalar 0 are different
mathematical objects. The ellipsis symbol in the mathematical notation is transcribed in Octave by the notion of a
range, with 1:m denoting all the integers starting from 1 tom, organized as a row vector. The notation is extended to
allow for strides different from one, and the mathematical ellipsis i=m,m−1, . . . , 1 is denoted as m:-1:1. In general
r:s:t denotes the set of numbers {r , r + s, . . . , r +ns} with r +ns � t, and r , s, t real numbers and n a natural number,
r ,s, t ∈ℝ, n∈ℕ. If there is no natural number n such that r +ns � t, an empty vector with no components is returned.

octave] m=4; disp(1:m)

1 2 3 4

octave] disp(m:-1:2)

4 3 2

octave] r=0; s=0.2; t=1; disp(r:s:t)

0.00000 0.20000 0.40000 0.60000 0.80000 1.00000

octave] r=0; s=0.3; t=1; disp(r:s:t)

0.00000 0.30000 0.60000 0.90000

octave] r=0; s= -0.2; t=1; disp(r:s:t)

[](1x0)

octave]

An efficient, expressive feature of many sostware systems including Octave is to use ranges as indices to a vector,
as shown below for the definition of 0 ∈ℝ4. Note that the index range i is organized as a row, and a transpose
operation must be applied to obtain z as a column vector.

octave] m=4; i=1:m; z(i)=i.^i; z=transpose(z); disp(z)

1
4
27
256

octave] i

i =

1 2 3 4
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octave] disp(transpose(z))

0 0 0 0

octave]

Visualization. A component-by-component display of a vector becomes increasingly unwieldy as the number
of components m becomes large. For example, the numbers below seem an inefficient way to describe the sine
function.

octave] t=0:0.1:1.5; disp(sin(t))

Columns 1 through 8:

0.00000 0.09983 0.19867 0.29552 0.38942 0.47943 0.56464 0.64422

Columns 9 through 16:

0.71736 0.78333 0.84147 0.89121 0.93204 0.96356 0.98545 0.99749

octave]

Indeed, such a piece-by-piece approach is not the way humans organize large amounts of information, preferring
to conceptualize the data as some other entity: an image, a sound excerpt, a smell, a taste, a touch, a sense of
balance, or relative position. All seven of these human senses will be shown to allow representation by linear
algebra concepts, including representation by vectors.

As a first example consider visualization, the process of transforming data into a sight perception. A familiar
example is constructing a plot of the graph of a function. Recall that in mathematics the graph of a function
f :X→Y relating elements of the domain X to those in codomain Y is a set of ordered pairs Gf = {(x ,y )| y = f (x),
x ∈X}. For a commonly encountered function such as sin: [0, 2π )→ [−1, 1], the graph Gsin= {(x , sin(x))|x ∈ [0, 2π ) }
contains an uncountably infinite number of elements, and obviously cannot be explicitly listed. The sine func-
tion is continuous, meaning that no matter how small an open interval (c ,d ) within the function codomain [−1,
1] one considers, there exists an interval (a, b) in the function domain [0, 2π ] whose image by the sine function
is contained in (c ,d ). In mathematical “δ −ε” notation this is stated as: ∀ε>0,∃δε,|x1−x0|<δε⇒|sin(x1)−sin(x0)|<
ε. This mathematical notation is concise and precise, but perceptive mainly to the professional mathematician.
A more intuitive visualization of continuity is obtained by approximating the graph of a function f : X → Y by
a finite set of samples, Gf

m = {(xi, yi)| xi ∈X , yi = f (xi), i = 1, . . . ,m,m ∈ℕ}. Strictly speaking, the sampled graph Gf
m

would indicate jumps interpretable as discontinuities, but when plotting the points human sight perception con-
veys a sense of continuity for large sample sizes, m≫1. For the sine function example, consider sampling the
domain [0, 2π ) with a step size h = 2π /m, m≫1. To obtain a visual representation of the sampled sine function
the Octave plot function can be used to produce a figure that will appear in another window, interactively inves-
tigated, and subsequently closed. For large m one cannot visually distinguish the points in the graph sample,
though this is apparent for smaller sample sizes. This is shown below by displaying a subrange of the sampled
points with stride s. This example also shows the procedure to save a permanent copy of the displayed figure
through the Octave print -deps command that places the currently displayed plot into an Encapsulated Post-
script file. The generated figure file can be linked to a document as shown here in Figure ?, in which both plots
render samples of the graph of the sine function, but the one with large m is perceived as being continuous.

octave] m=1000; h=2*pi/m; x=(0:m-1)*h;

octave] y=sin(x); plot(x,y);

octave] close;

octave] s=50; i=1:s:m; xs=x(i); ys=y(i);

octave] plot(x,y,'b',xs,ys,'bo');

octave] print -depsc L01Fig01.eps;

octave] close;

octave]
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Figure 1.1. Visualization of vectors of sampled function
graphs.

3. Matrices

3.1. Forming matrices

The real numbers themselves form the vector space ℛ1 = (ℝ, ℝ, +, ⋅), as does any field of scalars, 𝒮1 = (S, S, +, ⋅).
Juxtaposition of m real numbers has been seen to define the new vector space ℛm. This process of juxtaposition
can be continued to form additional mathematical objects. A matrix is defined as a juxtaposition of compatible
vectors. As an example, consider n vectors a1,a2, . . . ,an∈V within some vector space 𝒱= (V ,S, +, ⋅). Form a matrix
by placing the vectors into a row,

A = � a1 a2 . . . an �. (1.3)

To aid in visual recognition of a matrix, upper-case bold Latin letters will be used to denote matrices. The columns
of a matrix will be denoted by the corresponding lower-case bold letter with a subscripted index as in equation (1.3).
Note that the number of columns in a matrix can be different from the number of components in each column, as
would be the case for matrix A from equation (1.3) when choosing vectors from, say, the real space ℛm, a1,a2, . . . ,
an∈ℝm.

Vectors were seen to be useful juxtapositions of scalars that could describe quantities a single scalar could not: a
position in space, a force in physics, or a sampled function graph. The crucial utility of matrices is their central
role in providing a description of new vectors other then their column vectors, and is suggested by experience with
Euclidean spaces.

3.2. Identity matrix

Consider first ℛ1, the vector space of real numbers. A position vector r ∈ℛ1 on the real axis is specified by a
single scalar component, r = [x], x ∈ℝ. Read this to mean that the position r is obtained by traveling x units from
the origin at position vector 0 = [0]. Look closely at what is meant by “unit” in this context. Since x is a scalar,
the mathematical expression r = 0 + x has no meaning, as addition of a vector to a scalar has not been defined.
Recall that scalars were introduced to capture the concept of scaling of a vector, so in the context of vector spaces
they always appear as multiplying some vector. The correct mathematical description is r =0+x e , where e is the
unit vector e = [1]. Taking the components leads to r1=01+ xe1, where r1, 01, e1 are the first (and in this case only)
components of the r ,0,e vectors. Since r1=x , 01=0, e1=1, one obtains the identity x =0+x ⋅ 1.

Now consider ℛ2, the vector space of positions in the plane. Repeating the above train of thought leads to the
identification of two direction vectors e1 and e2

r = [[[[[[[[[ xy ]]]]]]]]]=x [[[[[[[[[ 10 ]]]]]]]]]+y [[[[[[[[[ 01 ]]]]]]]]]=x e1+y e2, e1= [[[[[[[[[ 10 ]]]]]]]]],e2= [[[[[[[[[ 01 ]]]]]]]]].
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octave] x=2; y=4; e1=[1; 0]; e2=[0; 1]; r=x*e1+y*e2

r =

2
4

octave]

Continuing the procees toℛm gives

x =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[
[
[ x1
x2
⋅⋅⋅
xm ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]
]
]
=x1 e1+x2e2+ ⋅ ⋅ ⋅ +xmem, e1=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[ 1
0
⋅⋅⋅
0
0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
, e2=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[ 0
1
⋅⋅⋅
0
0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
, . . . ,em=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[ 0
0
⋅⋅⋅
0
1 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
.

For arbitrary m, the components are now x1, x2, . . . , xm rather than the alphabetically ordered letters common for
m=2 orm=3. It is then consistent with the adopted notation convention to use x ∈ℛm to denote the position vector
whose components are (x1, . . . ,xm). The basic idea is the same as in the previous cases: to obtain a position vector
scale direction e1 by x1, e2 by x2, . . . , em by xm, and add the resulting vectors.

Juxtaposition of the vectors e1, e2, . . . , em leads to the formation of a matrix of special utility known as the identity
matrix

I = � e1 e2 . . . em �.

The identity matrix is an example of a matrix in which the number of column vectors n is equal to the number
of components in each column vector m = n. Such matrices with equal number of columns and rows are said to
be square. Due to entrenched practice an exception to the notation convention is made and the identity matrix
is denoted by I , but its columns are denoted the indexed bold-face of a different lower-case letter, e1, . . . , em. If it
becomes necessary to explicitly state the number of columns in I , the notation Im is used to denote the identity
matrix with m columns, each with m components.

4. Linear combinations

4.1. Linear combination as a matrix-vector product

The expression x =x1e1+x2e2+ ⋅⋅⋅ +xmem expresses the idea of scaling vectors within a set and subsequent addition
to form a new vector x . The matrix I = � e1 e2 . . . em � groups these vectors together in a single entity, and the
scaling factors are the components of the vector x . To bring all these concepts together it is natural to consider the
notation

x = Ix ,

as a generalization of the scalar expression x =1⋅x . It is clear what the operation Ix should signify: it should capture
the vector scaling and subsequent vector addition x1e1+x2e2+ ⋅ ⋅ ⋅ +xm em. A specific meaning is now ascribed to Ix
by identifying two definitions to one another.

Linear combination. Repeateadly stating “vector scaling and subsequent vector addition” is unwieldy, so a spe-
cial term is introduced for some given set of vectors {a1, . . . ,an}.

DEFINITION. (LINEAR COMBINATION) . The linear combination of vectors a1,a2, . . . ,an∈V with scalars x1,x2, . . . ,xn∈S in
vector space (V ,S, +, ⋅) is the vector b =x1a1+x2 a2+ . . .xnan .
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Matrix-vector product. Similar to the grouping of unit vectors e1,...,em into the identity matrix I , a more concise
way of referring to arbitrary vectors a1, . . . , an from the same vector space is the matrix A = � a1 a2 . . . an �. Com-
bining these observations leads to the definition of a matrix-vector product.

DEFINITION. (MATRIX-VECTOR PRODUCT) . In the vector space (V , S, +, ⋅), the product of matrix A = � a1 a2 . . . an �
composed of columns a1,a2, . . . , an∈V with the vector x ∈Sn whose components are scalars x1,x2, . . . ,xn∈S is the linear
combination b =x1a1+x2 a2+ . . .xnan=Ax ∈V .

4.2. Linear algebra problem examples

Linear combinations in E2. Consider a simple example that leads to a common linear algebra problem: decom-
position of forces in the plane along two directions. Suppose a force is given in terms of components along the
Cartesian x ,y -axes, b =bxex +byey , as expressed by the matrix-vector multiplication b = Ib . Note that the same force
could be obtained by linear combination of other vectors, for instance the normal and tangential components of the
force applied on an inclined plane with angle θ , b = xt et +xn en, as in Figure ?. This defines an alternate reference
system for the problem. The unit vectors along these directions are

t = [[[[[[[[[ cosθsinθ ]]]]]]]]],n = [[[[[[[[[ −sinθcosθ ]]]]]]]]],
and can be combined into a matrix A = � t n �. The value of the components (xt ,xn) are the scaling factors and can
be combined into a vector x = � xt xn �T . The same force must result irrespective of whether its components are
given along the Cartesian axes or the inclined plane directions leading to the equality

Ib =b =Ax . (1.4)

Interpret equation (1.4) to state that the vector b could be obtained either as a linear combination of I , b = Ib , or as
a linear combination of the columns of A, b =Ax . Of course the simpler description seems to be Ib for which the
components are already known. But this is only due to an arbitrary choice made by a human observer to define the
force in terms of horizontal and vertical components. The problem itself suggests that the tangential and normal
components are more relevant; for instance a friction force would be evaluated as a scaling of the normal force.
The components in this more natural reference system are not known, but can be determined by solving the vector
equality Ax =b , known as a linear system of equations. Procedures to carry this out will be studied in more detail
later, but Octave provides an instruction for this common problem, the backslash operator, as in x=A\b.

octave] ex=[1; 0]; ey=[0; 1];

octave] b=[0.2; 0.4]; I=[ex ey]; I*b

ans =

0.20000
0.40000

octave] th=pi/6; c=cos(th); s=sin(th);

octave] tvec=[c; s]; nvec=[-s; c];

octave] A=[tvec nvec];

octave] x=A\b

x =

0.37321
0.24641

octave] [x(1)*tvec x(2)*nvec]

ans =

0.32321 -0.12321
0.18660 0.21340

octave]

Figure 1.2. Alternative decompositions of force on inclined plane.
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Linear combinations inℛm and𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞𝒞 0[0,2π ). Linear combinations in a real space can suggest properties or approx-
imations of more complex objects such as continuous functions. Let 𝒞0[0,2π )= (C[0, 2π ),ℝ,+, ⋅) denote the vector
space of continuous functions that are periodic on the interval [0, 2π ), C[0, π ) = { f | f : ℝ→ℝ, f (t) = f (t + 2π )}.
Recall that vector addition is defined by ( f + g)(t) = f (t) + g(t), and scaling by (af )(t) = af (t), for f , g ∈C[0, 2π ),
a ∈ ℝ. Familiar functions within this vector space are sin(kt), cos(kt) with k ∈ℕ, and these can be recognized
to intrinsically represent periodicity on [0, 2π ), a role analogous to the normal and tangential directions in the
inclined plane example.

Define now another periodic function b(t +2π )=b(t) by repeating the values b(t)= t(π − t)(2π − t) from the interval
[0, 2π ) on all intervals [2pπ , 2(p + 1)π ], for p ∈ℤ. The function b is not given in terms of the “naturally” periodic
functions sin(kt), cos(kt), but could it thus be expressed? This can be stated as seeking a linear combination b(t)=
∑k=1

∞ xk sin(kt), as studied in Fourier analysis. The coefficients xk could be determined from an analytical formula
involving calculus operations xk =

1
π∫0

2π b(t) sin(kt)dt, but we'll seek an approximation using a linear combination
of n terms

b(t)≅�
k=1

n

xk sin(kt),A(t)= � sin(t) sin(2t) . . . sin(nt) �,A:ℝ→ℝn.

Organize this as a matrix vector product b(t)≅A(t)x , with

A(t)= � sin (t) sin (2t) . . . sin (nt) �,x = � x1 x2 . . . xn �T ∈ℝn.

The idea is to sample the column vectors of A(t) at the components of the vector t =� t1 t2 . . . tm �T ∈ℝm, tj= (j −1)h,
j =1,2, . . . ,m, h=π /m. Let b =b(t), and A =A(t), denote the so-sampled b,A functions leading to the definition of a
vector b ∈ℝm and a matrix A ∈ℝm×n. There are n coefficients available to scale the column vectors of A, and b has m
components. Form>n it is generally not possible to find x such that Ax would exactly equal b , but as seen later the
condition to be as close as possible to b leads to a well defined solution procedure. This is known as a least squares
problem and is automatically applied in the Octave x=A\b instruction when the matrix A is not square. As seen
in the following numerical experiment and Figure ?, the approximation is excellent even though the information
conveyed by m=1000 samples of b(t) is now much more efficiently stored in the form chosen for the columns of A
and the n=11 scaling coefficients that are the components of x .

octave] m=1000; h=2*pi/m; j=1:m;

octave] t(j)=(j-1)*h; t=transpose(t);

octave] n=5; A=[];

octave] for k=1:n
A = [A sin(k*t)];

end

octave] bt=t.*(pi-t).*(2*pi-t);

octave] x=A\bt;

octave] b=A*x;

octave] s=50; i=1:s:m;
ts=t(i); bs=bt(i);
plot(ts,bs,'ok',t,b,'r');

octave] print -depsc L01Fig02.eps

octave] close;

octave]

0 1 2 3 4 5 6 7
-15

-10

-5

0

5

10

15

Figure 1.3. Comparison of least squares approximation
(red line) with samples of exact function b(t).
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5. Vectors and matrice in data science

The above examples highlight some essential aspects of linear algebra in the context of data science applications.

• Vectors organize information that cannot be expressed as a single number and for which there exists a
concept of scaling and addition.

• Matrices group together multiple vectors.

• The matrix-vector product expresses a linear combination of the column vectors of the matrix.

• Solving a linear system Ax =b = Ib , to find x ∈ℝm for given b ∈ℝm, re-expresses the linear combination

b =b1e1+ ⋅ ⋅ ⋅ +bmem, I = � e1 e2 . . . em �,

as another linear combination

b =x1a1+x2a2+ . . .xnan, A = � a1 a2 . . . an �.

For certain problems the linear combination Ax might be more insightful, but the above transformation is
information-preserving, with b ,x both having the same number of components.

• Finding the best approximation of some given b ∈ℝm by a linear combination Ax of the n column vectors
of A ∈ℝm×n is known as a least squares problem and transforms the information from the m components of
b into n components of x , and knowledge of the form of the column vectors. If m >n and the form of the
columns of A can be succintly stated, the transformation compresses information.

Data science seeks to extract regularity directly from available data, not necessarily invoking any additional
hypotheses. The typical scenario is that immense amounts of data are available, with limited capability of human
analysis. In this context it is apparent that the least squares problem is of greater interest than solving a linear
system with a square matrix. It should also be clear that while computation by hand of small examples is useful
to solidify theroretical concepts, it is essential to become proficient in the use of sostware that can deal with large
data sets, such as Octave.

LINEAR MAPPINGS

1. Functions

1.1. Relations

The previous chapter focused on mathematical expression of the concept of quantification, the act of associating
human observation with measurements, as a first step of scientific inquiry. Consideration of different types of
quantities led to various types of numbers, vectors as groupings of numbers, and matrices as groupings of vectors.
Symbols were introduced for these quantities along with some intial rules for manipulating such objects, laying
the foundation for an algebra of vectors and matrices. Science seeks to not only observe, but to also explain, which
now leads to additional operations for working with vectors and matrices that will define the framework of linear
algebra.
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Explanations within scientific inquiry are formulated as hypotheses, from which predictions are derived and tested.
A widely applied mathematical transcription of this process is to organize hypotheses and predictions as two sets
X and Y , and then construct another set R of all of the instances in which an element of X is associated with an
element in Y . The set of all possible instances of x ∈X and y ∈Y , is the Cartesian product of X with Y , denoted as
X ×Y = {(x , y )| x ∈X , y ∈Y }, a construct already encountered in the definition of the real 2-space ℛ2 = (ℝ2, ℝ, +, ⋅)
where ℝ2=ℝ×ℝ. Typically, not all possible tuples (x ,y )∈X ×Y are relevant leading to the following definition.

DEFINITION. (RELATION) . A relation R between two sets X ,Y is a subset of the Cartesian product X ×Y, R⊂−X ×Y.

Similar to the difficulties encountered in attempting rigorous definition of a natural number, careful parsing of the
above definition also would reveal self-references since the member of symbol ∈, and the subset of symbol ⊂− are
both themselves examples of relations. As before, this is set aside to concetrate on the key concept of associating
an input x ∈X with an output y ∈Y . Associating an output to an input is also useful, leading to the definition of an
inverse relation as R−1⊂−Y ×X , R−1= {(y ,x) | (x ,y )∈R}. Note that an inverse exists for any relation, and the inverse
of an inverse is the original relation, (R−1)−1=R. From the above, a relation is a triplet (a tuple with three elements),
(X ,Y ,R), that will osten be referred to by just its last member R.

Computers can be programmed to work not only with numbers as Octave does, but also with general symbols as
exemplified by another freely available sostware package called Maxima. Most data science applications involve
numerical computation, but some knowledge of symbolic computation is also useful, as when working with sets
that osten arises in data classification. The colon symbol denotes assignment in Maxima, and sets can be defined
using curly braces with automatic elimination of repeated elements. All common set manipulations are provided,
such as the Cartesian product ×, and element of ∈. operations.

%i1] X: {a,b,c,b,a}

(%o1) {a,b,c}

%i2] Y: {alpha,beta,gamma}

(%o2) {α ,β ,γ }

%i3] XxY: cartesian_product(X,Y)

(%o3) {[a,α ], [a,β], [a,γ ], [b,α ], [b,β], [b,γ ], [c ,α ], [c ,β], [c ,γ ]}

%i4] [elementp([a,alpha],XxY), elementp([alpha,a],XxY)]

(%o4) [true, false]

%i5]

Associate the first three Latin and Greek letters by defining R = {(a, α ), (b, β), (c , γ )}. This is a relation between
X = {a,b, c} and Y = {α ,β ,γ } since it is a subset of X ×Y , which can be checked by defining a function that checks
whether some r ∈R is also an element of X ×Y . Maxima functions are defined using the := operator, and map
applies a function to all elements of a set.

%i10] R: {[a,alpha],[b,beta],[c,gamma]}$
verifyXxY(r):= elementp(r,XxY)$
map(verifyXxY,R)

(%o12) {true}

%i13]

Suppose that the Greek alphabet ordering is not known, and a might conceivably be associated to any of α ,β ,γ .
This defines another relation S = {(a,α ), (a,β), (a,γ )}. Finally consider possible reorderings of the Greek alphabet,
formulated as relationships between Y and itself, with P = {(α ,β), (β ,γ ), (γ ,α )} and I = {(α ,α ), (β ,β), (γ ,γ )} two such
possible reorderings. The relations R,S,P , I defined here will be used to exemplify various properties below.
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%i13] S: {[a,alpha],[a,beta],[a,gamma]}$
YxY: cartesian_product(Y,Y)$ verifyYxY(r):= elementp(r,YxY)$
P: {[alpha,beta], [beta,gamma], [gamma,alpha]}$
I: {[alpha,alpha], [beta,beta], [gamma,gamma]}$
[map(verifyXxY,S), map(verifyYxY,P), map(verifyYxY,I)]

(%o18) [{true}, {true}, {true}]

Homogeneous relations. Many types of relations are defined in mathematics and encountered in linear algebra,
and establishing properties of specific relations is an important task within data science. A commonly encountered
type of relationship is from a set onto itself, known as a homogeneous relation. Among the above-defined relations
P , I ⊂−Y ×Y are homogeneous, while R, S ⊂−X ×Y are not. For homogeneous relations H ⊂−A ×A, it is common to
replace the set membership notation (a, b) ∈H to state that a ∈A is in relationship H with b ∈A, with a binary

operator notation a ∼∼∼
H
b. Familiar examples include the equality and less than relationships between reals, E , L⊂−

ℝ×ℝ, in which (a,b)∈E is replaced by a=b, and (a,b)∈L is replaced by a<b. The equality relationship is its own
inverse, and the inverse of the less than relationship is the greater than relation G ⊂−ℝ×ℝ, G = L−1, a < b⇒ b > a.
Homogeneous relations H⊂−A×A are classified according to the following criteria.

Reflection. Relation H is reflexive if (a,a)∈H for any a∈A. The equality relation E ⊂−ℝ×ℝ is reflexive, ∀a∈A,
a=a, the less than relation L⊂−ℝ×ℝ is not, 1 ∈R, 1≮1.

Symmetry. Relation H is symmetric if (a, b) ∈H implies that (b, a) ∈H, (a, b) ∈H⇒ (b, a) ∈H. The equality
relation E ⊂−ℝ×ℝ is symmetric, a=b⇒b =a, the less than relation L⊂−ℝ×ℝ is not, a<b⇏b <a.

Anti-symmetry. Relation H is anti-symmetric if (a, b) ∈H for a ≠ b, then (b, a) ∉H. The less than relation
L⊂−ℝ×ℝ is antisymmetric, a<b⇒b ≮a.

Transitivity. Relation H is transitive if (a, b) ∈H and (b, c) ∈H implies (a, c) ∈H. for any a ∈A. The equality
relation E ⊂−ℝ×ℝ is transitive, a=b ∧b = c⇒a= c , as is the less than relation L⊂−ℝ×ℝ, a<b ∧b < c⇒a< c .

Certain combinations of properties osten arise. A homogeneous relation that is reflexive, symmetric, and transitive
is said to be an equivalence relation. Equivalence relations include equality among the reals, or congruence among
triangles. A homogeneous relation that is reflexive, anti-symmetric and transitive is a partial order relation, such as
the less than or equal relation between reals. Finally, a homogeneous relation that is anti-symmetric and transitive
is an order relation, such as the less than relation between reals.

1.2. Functions

Functions between sets X and Y are a specific type of relationship that osten arise in science. For a given input
x ∈X , theories that predict a single possible output y ∈Y are of particular scientific interest.

DEFINITION. (FUNCTION) . A function from set X to set Y is a relation F ⊂−X ×Y, that associates to x ∈X a single y ∈Y.

The above intuitive definition can be transcribed in precise mathematical terms as F ⊂−X ×Y is a function if (x ,y )∈F
and (x , z)∈F implies y = z. Since it's a particular kind of relation, a function is a triplet of sets (X ,Y ,F ), but with a
special, common notation to denote the triplet by f :X→Y , with F = {(x , f (x))|x ∈X , f (x)∈Y } and the property that
(x ,y )∈F ⇒y = f (x). The set X is the domain and the set Y is the codomain of the function f . The value from the
domain x ∈X is the argument of the function associated with the function value y = f (x). The function value y is said
to be returned by evaluation y = f (x). The previously defined relations R,P , I are functions but S = {(a,α ), (a,β), (a,γ )}
is not. All relations can be inverted, and inversion of a function defines a new relation, but which might not itself
be a function. For example the relation S−1= {(α ,a), (β ,a), (γ ,a)} is a function, but its inverse (S−1)−1=S is not.

Familiar functions include:

• the trigonometric functions cos: ℝ→ [−1, 1], sin: ℝ→ [−1, 1] that for argument θ ∈ℝ return the function
values cos(θ ),sin(θ ) giving the Cartesian coordinates (x ,y )∈ℝ2 of a point on the unit circle at angular extent
θ from the x-axis;

• the exponential and logarithm functions exp:ℝ→ℝ, log: (0,∞)→ℝ, as well as power and logarithm func-
tions in some other base a;
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• polynomial functions pn:ℝ→ℝ, defined by a succession of additions and multiplications

pn(x)=anx n+an−1x n−1+ ⋅ ⋅ ⋅ +a1x +a0=�
i=0

n

aix i = ((anx +an−1)x + ⋅ ⋅ ⋅ +a1)x +a0.

Simple functions such as sin, cos, exp, log, are predefined in Octave, and when given a vector argument return the
function applied to each vector component.

octave] disp(cos(0:pi/4:pi))

1.0000e+00 7.0711e-01 6.1232e-17 -7.0711e-01 -1.0000e+00

octave] y=log2(1:8); disp(y)

0.00000 1.00000 1.58496 2.00000 2.32193 2.58496 2.80735 3.00000

octave] disp(pow2(y))

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

octave] a=[1 0 -1]; x=-2:2; y=polyval(a,x); disp(y)

3 0 -1 0 3

octave]

As seen previously, a Euclidean space Em= (ℝm, ℝ, +, ⋅) can be used to suggest properties of more complex spaces
such as the vector space of continuous functions 𝒞0(ℝ). A construct that will be osten used is to interpret a vector
within Em as a function, since v ∈ℝm with components v =� v1 v2 . . . vm �T also defines a function v :{1,2,...,m}→ℝ,
with values v (i)=vi. As the number of components grows the function v can provide better approximations of some
continuous function f ∈𝒞0(ℝ) through the function values vi =v (i)= f (xi) at distinct sample points x1,x2, . . . ,xm.

The above function examples are all defined on a domain of scalars or naturals and returned scalar values. Within
linear algebra the particular interest is on functions defined on sets of vectors from some vector space 𝒱= (V ,S,
+, ⋅) that return either scalars f :V → S, or vectors from some other vector space 𝒲 = (W ,S, +, ⋅), g :V →W . The
codomain of a vector-valued function might be the same set of vectors as its domain, h :V →V . The fundamental
operation within linear algebra is the linear combination au + bv with a, b ∈ S, u , v ∈V . A key aspect is to char-
acterize how a function behaves when given a linear combination as its argument, for instance f (au + bv ) or
g (au +bv ).

1.3. Linear functionals

Consider first the case of a function defined on a set of vectors that returns a scalar value. These can be interpreted
as labels attached to a vector, and are very osten encountered in applications from natural phenomena or data
analysis.

DEFINITION. (FUNCTIONAL) . A functional on vector space 𝒱= (V ,S, +, ⋅) is a function from the set of vectors V to the
set of scalars S of the vector space 𝒱.

DEFINITION. (LINEAR FUNCTIONAL) . The functional f :V →S on vector space 𝒱= (V ,S, +, ⋅) is a linear functional if for
any two vectors u ,v ∈V and any two scalars a,b

f (au +bv )=af (u )+bf (v ). (1.5)

Many different functionals may be defined on a vector space 𝒱= (V ,S,+, ⋅), and an insightful alternative description
is provided by considering the set of all linear functionals, that will be denoted as V ∗= { f | f :V→S}. These can be
organized into another vector space 𝒱∗= (V ∗,S, +, ⋅) with vector addition of linear functionals f ,g ∈V ∗ and scaling
by a∈S defined by

( f +g)(u )= f (u )+g(u ), (af )(u )=af (u ), u ∈V . (1.6)
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DEFINITION. (DUAL VECTOR SPACE) . For some vector space 𝒱, the vector space of linear functionals 𝒱∗ is called the
dual vector space.

As is osten the case, the above abstract definition can better be understood by reference to the familiar case of
Euclidean space. Consider ℛ2= (ℝ2,ℝ,+, ⋅), the set of vectors in the plane with x ∈ℝ2 the position vector from the
origin (0,0) to point X in the plane with coordinates (x1,x2). One functional from the dual spaceℛ2

∗ is f2(x )=x2, i.e.,
taking the second coordinate of the position vector. The linearity property is readily verified. For x , y ∈ℛ2, a,b ∈ℝ,

f2(ax +by )=ax2+by2=af2(x )+bf2(y ).

Given some constant value h ∈ℝ, the curves within the plane defined by f2(x ) = h are called the contour lines or
level sets of f2. Several contour lines and position vectors are shown in Figure ?. The utility of functionals and dual
spaces can be shown by considering a simple example from physics. Assume that x2 is the height above ground
level and a vector x is the displacement of a body of mass m in a gravitational field. The mechanical work done
to list the body from ground level to height h is W =mgh with g the gravitational acceleration. The mechanical
work is the same for all displacements x that satisfy the equation f2(x )=h. The work expressed in units mgΔh can
be interpreted as the number of contour lines f2(x )=nΔh intersected by the displacement vector x . This concept
of duality between vectors and scalar-valued functionals arises throughout mathematics, the physical and social
sciences and in data science. The term “duality” itself comes from geometry. A point X in ℝ2 with coordinates
(x1,x2) can be defined either as the end-point of the position vector x , or as the intersection of the contour lines of
two funtionals f1(x )=x1 and f2(x )=x2. Either geometric description works equally well in specifying the position of
X , so it might seem redundant to have two such procedures. It turns out though that many quantities of interest
in applications can be defined through use of both descriptions, as shown in the computation of mechanical work
in a gravitational field.
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Figure 1.4. Vectors in E2 and contour lines of the functional f (x )=x2

1.4. Linear mappings

Consider now functions f :V →W from vector space 𝒱 = (V , S, +, ⋅) to another vector space 𝒲 = (W , T , +, ⋅). As
before, the action of such functions on linear combinations is of special interest.

DEFINITION. (LINEARMAPPING) . A function f :V→W, from vector space 𝒱= (V ,S,+, ⋅) to vector space 𝒲= (W ,S,⊕,F. )
is called a linear mapping if for any two vectors u ,v ∈V and any two scalars a,b ∈S

f (au +bv )=af (u )+bf (v ). (1.7)

The image of a linear combination au +bv through a linear mapping is another linear combination af (u )+bf (v ),
and linear mappings are said to preserve the structure of a vector space, and called homomorphisms in mathe-
matics. The codomain of a linear mapping might be the same as the domain in which case the mapping is said to
be an endomorphism.
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Matrix-vector multiplication has been introduced as a concise way to specify a linear combination

f (x )=Ax =x1 a1+ ⋅ ⋅ ⋅ +xnan,

with a1, . . . ,an the columns of the matrix, A = � a1 a2 . . . an �. This is a linear mapping between the real spacesℛm,
ℛn, f :ℝm→ℝn, and indeed any linear mapping between real spaces can be given as a matrix-vector product.

2. Measurements
Vectors within the real spaceℛm can be completely specified by m real numbers, even though m is large in many
realistic applications. A vector within 𝒞0(ℝ), i.e., a continuous function defined on the reals, cannot be so specified
since it would require an infinite, non-countable listing of function values. In either case, the task of describing the
elements of a vector space 𝒱= (V ,S, +, ⋅) by simpler means arises. Within data science this leads to classification
problems in accordance with some relevant criteria.

2.1. Equivalence classes

Many classification criteria are scalars, defined as a scalar-valued function f :𝒱→S on a vector space, 𝒱= (V ,S, +,
⋅). The most common criteria are inspired by experience with Euclidean space. In a Euclidean-Cartesian model (ℝ2,
ℝ,+, ⋅) of the geometry of a plane Π, a point O ∈Π is arbitrarily chosen to correspond to the zero vector 0=� 0 0 �T ,
along with two preferred vectors e1, e2 grouped together into the identity matrix I . The position of a point X ∈Π
with respect to O is given by the linear combination

x = Ix +0= � e1 e2 �[[[[[[[[[ x1x2 ]]]]]]]]]=x1e1+x2 e2 .
Several possible classifications of points in the plane are depicted in Figure ?: lines, squares, circles. Intuitively, each
choice separates the plane into subsets, and a given point in the plane belongs to just one in the chosen family of
subsets. A more precise characterization is given by the concept of a partition of a set.

DEFINITION. (PARTITION) . A partition of a set is a grouping of its elements into non-empty subsets such that every
element is included in exactly one subset.

In precise mathematical terms, a partition of set S is P = {Si |Si ⊂P ,Si ≠∅, i∈ I} such that ∀x ∈S, ∃! j ∈ I for which x ∈Sj.
Since there is only one set (∃! signifies “exists and is unique”) to which some given x ∈S belongs, the subsets Si of
the partition P are disjoint, i≠ j⇒Si ∩Sj =∅. The subsets Si are labeled by i within some index set I . The index set
might be a subset of the naturals, I ⊂ℕ in which case the partition is countable, possibly finite. The partitions of
the plane suggested by Figure ? are however indexed by a real-valued label, i ∈ℝ with I ⊂ℝ.

A technique which is osten used to generate a partition of a vector space 𝒱= (V ,S, +, ⋅) is to define an equivalence
relation between vectors, H ⊂−V ×V . For some element u ∈V , the equivalence class of u is defined as all vectors v
that are equivalent to u , {v| (u ,v )∈H }. The set of equivalence classes of is called the quotient set and denoted as
V /H, and the quotient set is a partition of V . Figure ? depicts four different partitions of the plane. These can be
interpreted geometrically, such as parallel lines or distance from the origin. With wider implications for linear
algebra, the partitions can also be given in terms of classification criteria specified by functions.
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Figure 1.5. Equivalence classes within the plane
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2.2. Norms

The partition of ℝ2 by circles from Figure 1.5 is familiar; the equivalence classes are sets of points whose position
vector has the same size, �x = � x1 x2 �T | ( x12 + x22)1/2 = r�, or is at the same distance from the origin. Note that
familiarity with Euclidean geometry should not obscure the fact that some other concept of distance might be
induced by the data. A simple example is statement of walking distance in terms of city blocks, in which the
distance from a starting point to an address x1=3 blocks east and x2=4 blocks north is x1+x2=7 city blocks, not the
Euclidean distance (x12+x22)1/2=5 since one cannot walk through the buildings occupying a city block.

The above observations lead to the mathematical concept of a norm as a tool to evaluate vector magnitude. Recall
that a vector space is specified by two sets and two operations, 𝒱 = (V , S, +, ⋅), and the behavior of a norm with
respect to each of these components must be defined. The desired behavior includes the following properties and
formal definition.

Unique value. The magnitude of a vector v ∈V should be a unique scalar, requiring the definition of a func-
tion. The scalar could have irrational values and should allow ordering of vectors by size, so the function
should be from V to ℝ, f :V →ℝ. On the real line the point at coordinate x is at distance |x| from the
origin, and to mimic this usage the norm of v ∈V is denoted as ‖v‖, leading to the definition of a function
‖ ‖:V →ℝ+, ℝ+= {a|a∈ℝ,a�0}.

Null vector case. Provision must be made for the only distinguished element of V , the null vector 0. It is
natural to associate the null vector with the null scalar element, ‖0‖=0. A crucial additional property is also
imposed namely that the null vector is the only vector whose norm is zero, ‖v‖=0⇒v =0. From knowledge
of a single scalar value, an entire vector can be determined. This property arises at key junctures in linear
algebra, notably in providing a link to another branch of mathematics known as analysis, and is needed to
establish the fundamental theorem of linear algbera or the singular value decomposition encountered later.

Scaling. Transfer of the scaling operation v = au property leads to imposing ‖v‖ = |a| ‖u‖. This property
ensures commensurability of vectors, meaning that the magnitude of vector v can be expressed as a mul-
tiple of some standard vector magnitude ‖u‖.

Vector addition. Position vectors from the origin to coordinates x , y > 0 on the real line can be added and
|x + y| = |x| + |y|. If however the position vectors point in different directions, x > 0, y < 0, then |x +
y| < |x| + |y|. For a general vector space the analogous property is known as the triangle inequality ,
‖u +v‖�‖u‖+‖v‖ for u ,v ∈V .

DEFINITION. (NORM) . A norm on the vector space 𝒱= (V ,S,+, ⋅) is a function ‖ ‖:V→ℝ+ that for u ,v ∈V, a∈S satisfies:

1. ‖v‖=0⇒v =0;

2. ‖au‖=|a| ‖u‖;

3. ‖u +v‖�‖u‖+‖v‖.

Note that the norm is a functional, but the triangle inequality implies that it is not generally a linear functional.
Returning to Figure 1.5, consider the functions fi:ℝ2→ℝ+ defined for x = � x1 x2 �T through values

f1(x )=|x1|, f2(x )=|x2|, f3(x )=|x1|+|x2|, f4(x )= (|x1|2+|x2|2)1/2.

Sets of constant value of the above functions are also equivalence classes induced by the equivalence relations Ei

for i=1,2, 3, 4.

1. f1(x )= c⇒|x1|= c , E1= {(x , y )| f1(x )= f1(y )⇔|x1|=|y1| }⊂−ℝ2×ℝ2;

2. f2(x )= c⇒|x2|= c , E2= {(x , y )| f2(x )= f2(y )⇔|x2|=|y2| }⊂−ℝ2×ℝ2;

3. f3(x )= c⇒|x1|+|x2|= c , E3= {(x , y )| f3(x )= f3(y )⇔|x1|+|x2|=|y1|+|y2|}⊂−ℝ2×ℝ2;

4. f4(x )= c⇒ (|x1|2+|x2|2)1/2= c , E4= {(x , y )| f4(x )= f4(y )⇔ (|x1|2+|x2|2)1/2= (|y1|2+|y2|2)1/2 }⊂−ℝ2×ℝ2.

These equivalence classes correspond to the vertical lines, horizontal lines, squares, and circles of Figure 1.5. Not
all of the functions fi are norms since f1(x ) is zero for the non-null vector x =� 0 1 �T , and f2(x )is zero for the non-
null vector x =� 1 0 �T . The functions f3 and f4 are indeed norms, and specific cases of the following general norm.
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DEFINITION. (p-NORM IN ℛm) . The p-norm on the real vector space ℛm= (ℝm, ℝ, +, ⋅) for p � 1 is the function ‖ ‖p:
V→ℝ+ with values ‖x‖p= (|x1|p+|x2|p+ ⋅ ⋅ ⋅ +|xm|p)1/p, or

‖x‖p=(((((((((((((�
i=1

m

|xi|p)))))))))))))
1/p

for x ∈ℝm. (1.8)

Denote by xi the largest component in absolute value of x ∈ℝm. As p increases, |xi|p becomes dominant with
respect to all other terms in the sum suggesting the definition of an inf-norm by

‖x‖∞=max
1�i�m

|xi| .

This also works for vectors with equal components, since the fact that the number of components is finite while
p→∞ can be used as exemplified for x = � a a . . . a �T , by ‖x‖p= (m|a|p)1/p=m1/p|a|, with m1/p→1.

Note that the Euclidean norm corresponds to p =2, and is osten called the 2-norm. The analogy between vectors
and functions can be exploited to also define a p-norm for 𝒞0[a,b]= (C([a,b]),ℝ,+, ⋅) , the vector space of continuous
functions defined on [a,b].

DEFINITION. (p-NORM IN 𝒞0[a,b]) . The p-norm on the vector space of continuous functions 𝒞0[a, b] for p � 1 is the
function ‖ ‖p:V →ℝ+ with values

‖ f ‖p=��
a

b
| f (x)|pdx�1/p

, for f ∈C[a,b]. (1.9)

The integration operation ∫a
b can be intuitively interpreted as the value of the sum ∑i=1

m from equation (1.8) for
very large m and very closely spaced evaluation points of the function f (xi), for instance |xi+1−xi|= (b −a)/m. An
inf-norm can also be define for continuous functions by

‖ f ‖∞= sup
x ∈[a,b]

| f (x)|,

where sup, the supremum operation can be intuitively understood as the generalization of the max operation over
the countable set {1, 2, . . . ,m} to the uncountable set [a,b].
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Figure 1.6. Regions within ℝ2 for which ‖x‖p�1, for p=1, 2, 3,∞.

Vector norms arise very osten in applications, especially in data science since they can be used to classify data, and
are implemented in sostware systems such as Octave in which the norm function with a single argument computes
the most commonly encountered norm, the 2-norm. If a second argument p is specified the p-norm is computed.

octave] x=[1; 1; 1]; disp([norm(x) sqrt(3)])

1.7321 1.7321

octave] m=9; x=ones(m,1); disp([norm(x) sqrt(m)])

3 3

octave] m=4; x=ones(m,1); disp([norm(x,1) m])

4 4
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octave] disp([norm(x,1) norm(x,2) norm(x,4) norm(x,8) norm(x,16) norm(x,inf)])

4.0000 2.0000 1.4142 1.1892 1.0905 1.0000

octave]

2.3. Inner product

Norms are functionals that define what is meant by the size of a vector, but are not linear. Even in the simplest case
of the real line, the linearity relation |x +y|=|x|+|y| is not verified for x >0, y <0. Nor do norms characterize
the familiar geometric concept of orientation of a vector. A particularly important orientation from Euclidean
geometry is orthogonality between two vectors. Another function is required, but before a formal definition some
intuitive understanding is sought by considering vectors and functionals in the plane, as depicted in Figure ?.
Consider a position vector x = � x1 x2 �T ∈ℝ2 and the previously-encountered linear functionals

f1, f2:ℝ2→ℝ, f1(x )=x1, f2(x )=x2.

The x1 component of the vector x can be thought of as the number of level sets of f1 times it crosses; similarly for
the x2 component. A convenient labeling of level sets is by their normal vectors. The level sets of f1 have normal
e1T = � 1 0 �, and those of f2 have normal vector e2T = � 0 1 �. Both of these can be thought of as matrices with two
columns, each containing a single component. The products of these matrices with the vector x gives the value of
the functionals f1, f2

e1Tx = � 1 0 �[[[[[[[[[ x1x2 ]]]]]]]]]=1 ⋅x1+0 ⋅x2=x1= f1(x ),

e2T x = � 0 1 �[[[[[[[[[ x1x2 ]]]]]]]]]=0 ⋅x1+1 ⋅x2=x1= f2(x ).
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Figure 1.7. Euclidean space E2 and its dual E2∗.

In general, any linear functional f defined on the real spaceℛm can be labeled by a vector

aT = � a1 a2 . . . am �,

and evaluated through the matrix-vector product f (x ) = aT x . This suggests the definition of another function s:
ℝm×ℝm→ℝ,

s(a ,x )= aT x .

The function s is called an inner product, has two vector arguments from which a matrix-vector product is formed
and returns a scalar value, hence is also called a scalar product. The definition from an Euclidean space can be
extended to general vector spaces. For now, consider the field of scalars to be the reals S =ℝ.

DEFINITION. (INNER PRODUCT) . An inner product in the vector space 𝒱 = (V , ℝ, +, ⋅) is a function s:V ×V →ℝ with
properties

Symmetry. For any a ,x ∈V, s(a ,x )= s(x ,a ).
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Linearity in second argument. For any a ,x , y ∈V, α ,β ∈ℝ, s(a ,αx +βy )=αs(a ,x )+βs(a , y ).

Positive definiteness. For any x ∈V \{0}, s(x ,x )>0.

The inner product s(a ,x ) returns the number of level sets of the functional labeled by a crossed by the vector x , and
this interpretation underlies many applications in the sciences as in the gravitational field example above. Inner
products also provide a procedure to evaluate geometrical quantities and relationships.

Vector norm. In ℛm the number of level sets of the functional labeled by x crossed by x itself is identical to
the square of the 2-norm

s(x ,x )=xTx =‖x‖2
2 .

In general, the square root of s(x ,x ) satisfies the properties of a norm, and is called the norm induced by an
inner product

‖ x‖= s(x ,x )1/2.

A real space together with the scalar product s(x , y ) = xTy and induced norm ‖x‖ = s(x , x )1/2 defines an
Euclidean vector space ℰm.

Orientation. In ℰ2 the point specified by polar coordinates (r , θ ) has the Cartesian coordinates x1= r cos θ ,
x2= r sinθ , and position vector x = � x1 x2 �T . The inner product

e1T x = � 1 0 � [ x1x2
]=1 ⋅x1+0 ⋅x2= r cosθ ,

is seen to contain information on the relative orientation of x with respect to e1. In general, the angle θ
between two vectors x , y with any vector space with a scalar product can be defined by

cosθ =
s(x , y )

[s(x ,x ) s(y , y )]1/2 =
s(x , y )

‖x‖ ‖y‖ ,
which becomes

cosθ =
xTy

‖x‖‖y‖ ,
in a Euclidean space, x , y ∈ℝm.

Orthogonality. In ℰ2 two vectors are orthogonal if the angle between them is such that cos θ = 0, and this
can be extended to an arbitrary vector space 𝒱= (V ,ℝ,+, ⋅) with a scalar product by stating that x , y ∈V are
orthogonal if s(x , y )=0. In ℰm vectors x , y ∈ℝm are orthogonal if xT y =0.

3. Linear mapping composition

3.1. Matrix-matrix product

From two functions f :A→B and g :B→C , a composite function, h=g ∘ f , h:A→C is defined by

h(x)=g( f (x)).

Consider linear mappings between Euclidean spaces f :ℝn→ℝm, g :ℝm→ℝp. Recall that linear mappings between
Euclidean spaces are expressed as matrix vector multiplication

f (x )=Ax , g (y )=By ,A ∈ℝm×n,B ∈ℝp×m.

The composite function h = g ∘ f is h :ℝn→ℝp, defined by

h (x )= g (f (x ))= g (Ax )=BAx .

Note that the intemediate vector u =Ax is subsequently multiplied by the matrix B . The composite function h is
itself a linear mapping

h (ax +by )=BA(ax +by )=B (aAx +bAy )=B (au +bv )=aBu +bBv =aBAx +bBAy =ah (x )+bh (y ),

so it also can be expressed a matrix-vector multiplication

h (x )=Cx =BAx . (1.10)
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Using the above, C is defined as the product of matrix B with matrix A

C =BA.

The columns of C can be determined from those of A by considering the action of h on the the column vectors of
the identity matrix I = � e1 e2 . . . en �∈ℝn×n. First, note that

Aej = � a1 a2 . . . an �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[ 1
0
⋅⋅⋅
⋅⋅⋅
0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
= a1, . . . , Aej = � a1 a2 . . . an �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[ 0
⋅⋅⋅
1
⋅⋅⋅
0 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
= aj,Aen= � a1 a2 . . . an �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[ 0
⋅⋅⋅
⋅⋅⋅
0
1 ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
= an. (1.11)

The above can be repeated for the matrix C = � c1 c2 . . . cn � giving

h (e1)=Ce1= c1, . . . ,h (ej)=Cej = cj, . . . ,h (en)=Cen= cn. (1.12)

Combining the above equations leads to cj =Baj, or

C = � c1 c2 . . . cn �=B � a1 a2 . . . an �.

From the above the matrix-matrix product C =BA is seen to simply be a grouping of all the products of B with the
column vectors of A,

C = � c1 c2 . . . cn �= �B a1 Ba2 . . . Ban �

Matrix-vector and matrix-matrix products are implemented in Octave, the above results can readily be verified.

octave] a1=[1; 2]; a2=[3; 4]; A=[a1 a2]

A =

1 3
2 4

octave] b1=[-1; 1; 3]; b2=[2; -2; 3]; B=[b1 b2]

B =

-1 2
1 -2
3 3

octave] C=B*A

C =

3 5
-3 -5
9 21

octave] c1=B*a1; c2=B*a2; [c1 c2]

ans =

3 5
-3 -5
9 21

octave]
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