
DATA COMPRESSION

A typical scenario in many sciences is acquisition of m numbers to describe some object that is understood to actually

require only njm parameters. For example, m voltage measurements u

i

of an alternating current could readily be

reduced to three parameters, the amplitude, phase and frequency u(t)=asin(�t+�). Very often a simple �rst-degree

polynomial approximation y=ax+b is sought for a large data set D={(x

i

,y

i

), i=1, . . . ,m}. All of these are instances

of data compression, a problem that can be solved in a linear algebra framework.

1. Projection

Consider a partition of a vector space U into orthogonal subspaces U =V �W, V =W

¥

, W =V

¥

. Within the typical

scenario described above U =�

m

, V ��

m

, W ��

m

, dimV =n, dimW =m�n. If }=[
�

1

. . . �

n

]��

m×n

is a basis

for V and~=[
�

1

. . . �

m�n

]��

m×(m�n)

is a basis for W, then |=[
�

1

. . . �

n

�

1

. . . �

m�n

] is a basis for U. Even

though the matrices },~ are not necessarily square, they are said to be orthogonal, in the sense that all columns are

of unit norm and orthogonal to one another. Computation of the matrix product }

T

} leads to the formation of the

identity matrix within�

n

}

T

}=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�

1

T

�

2

T

Å

Å

Å

�

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[
�

1

�

2

. . . �

n

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�

1

T

�

1

�

1

T

�

2

. . . �

1

T

�

n

�

2

T

�

1

�

2

T

�

2

. . . �

2

T

�

n

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

�

n

T

�

1

�

n

T

�

2

. . . �

n

T

�

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= p

n

.

Similarly,~

T

~ = p

m�n

. Whereas for the square orthogonal matrix | multiplication both on the left and the right by

its transpose leads to the formation of the identity matrix

|

T

|=||

T

= p

m

,

the same operations applied to rectangular orthogonal matrices lead to di�erent results

}

T

}= p

n

,}}

T

=[
�

1

�

2

. . . �

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�

1

T

�

2

T

Å

Å

Å

�

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=y

i=1

n

�

i

�

i

T

, rank(�

i

�

i

T

)=1

A simple example is provided by taking }= p

m,n

, the �rst n columns of the identity matrix in which case

}}

T

=y

i=1

n

�

i

�

i

T

=

[

[

[

[

[

[

[

p

n

Î

Î Î

]

]

]

]

]

]

]

��

m×m

.

Applying w=}}

T

to some vector ���

m

leads to a vector �=w� whose �rst n components are those of �, and the

remaining m�n are zero. The subtraction �� � leads to a new vector �=(p�w)� that has the �rst components equal to

zero, and the remaining m�n the same as those of �. Such operations are referred to as projections, and for }= p

m,n

correspond to projection onto the span{�

1

, . . . ,�

n

}.

octave] I4=eye(5); V=I4(:,1:2); P=V*V'; Q=I4-P;

b=rand(5,1); r=P*b; s=Q*b; disp([P b r s])

1.00000 0.00000 0.00000 0.00000 0.00000 0.42253 0.42253

0.00000

0.00000 1.00000 0.00000 0.00000 0.00000 0.95900 0.95900

0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.41781 0.00000

0.41781

0.00000 0.00000 0.00000 0.00000 0.00000 0.45744 0.00000

0.45744

0.00000 0.00000 0.00000 0.00000 0.00000 0.49784 0.00000

0.49784

DATA COMPRESSION 1

octave]

U=�

2

W=

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

ã

0

y

ä
|y��

}

}

}

}

}

}

}

}

}

}
}

}

}

}

}

}

}

}

}

}

V =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

ã

x

0

ä| x��

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

}

�

�=w�

�=(p�w)�

Figure 1. Projection in�

2

. The vectors �, ���

2

have two components, but could be expressed through scaling of �

1

,�

2

.

Returning to the general case, the orthogonal matrices |��

m×m

, }��

m×n

,~��

m×(m�n)

are associated with linear

mappings �= � (�)=|�, �=�(�)=w�, �=�(�)= (p �w)�. The mapping � gives the components in the p basis of a

vector whose components in the | basis are �. The mappings �,� project a vector onto span{�

1

, . . . ,�

n

}, span{�

1

, . . . ,

�

m�n

}, respectively. When },~ are orthogonal matrices the projections are also orthogonal �¥ �. Projection can also

be carried out onto nonorthogonal spanning sets, but the process is fraught with possible error, especially when the

angle between basis vectors is small, and will be avoided henceforth.

Notice that projection of a vector already in the spanning set simply returns the same vector, which leads to a general

de�nition.

DEFINITION. The mapping is called a projection if � � � = �, or if for any ��U, � (� (�))= � (�). With w the matrix

associated �, a projection matrix satis�es w

2

=w.

w=}}

T

w

2

=ww=}}

T

}}

T

=} (}

T

})}

T

=}p}

T

=}}

T

=w

2. Gram-Schmidt

Orthonormal vector sets {�

1

, . . . ,�

n

} are of the greatest practical utility, leading to the question of whether some such

a set can be obtained from an arbitrary set of vectors {�

1

, . . . ,�

n

}. This is possible for independent vectors, through

what is known as the Gram-Schmidt algorithm

1. Start with an arbitrary direction �

1

2. Divide by its norm to obtain a unit-norm vector �

1

=�

1

/��

1

�

3. Choose another direction �

2

4. Subtract o� its component along previous direction(s) �

2

� (�

1

T

�

2

)�

1

5. Divide by norm �

2

=(�

2

� (�

1

T

�

2

)�

1

)/��

2

� (�

1

T

�

2

)�

1

�

6. Repeat the above

�

1

�

2

�

1

�

2

�

2

� (�

1

T

�

2

)�

1

w

1

�

2

=(�

1

�

1

T

)�

2

=�

1

(�

1

T

�

2

)=(�

1

T

�

2

)�

1

The above geometrical description can be expressed in terms of matrix operations as

h=(
�

1

�

2

. . . �

n

)=(
�

1

�

2

. . . �

n

)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r

11

r

12

r

13

. . . r

1n

0 r

22

r

23

. . . r

2n

0 0 r

33

. . . r

3n

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 0 r

mn

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=xy,

equivalent to the system

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

�

1

= r

11

�

1

�

2

= r

12

�

1

+ r

22

�

2

Å

Å

Å

�

n

= r

1n

�

1

+ r

2n

�

2

+ . . . + r

nn

�

n

.

The system is easily solved by forward substitution resulting in what is known as the (modi�ed) Gram-Schmidt

algorithm, transcribed below both in pseudo-code and in Octave.

Algorithm (Gram-Schmidt)

Given n vectors �

1

, . . . ,�

n

Initialize �

1

=�

1

,..,�

n

=�

n

, y= p

n

for i=1 to n

r

ii

=(�

i

T

�

i

)

1/2

if r

ii

<� break;

�

i

=�

i

/r

ii

for j= i+1 to n

r

ij

=�

i

T

�

j

; �

j

=�

j

� r

ij

�

i

end

end

return x,y

octave] function [Q,R] = mgs(A)

[m,n]=size(A); Q=A; R=eye(n);

for i=1:n

R(i,i) = sqrt(Q(:,i)'*Q(:,i));

if (R(i,i)<eps) break;

Q(:,i) = Q(:,i)/R(i,i);

for j=i+1:n

R(i,j) = Q(:,i)'*A(:,j);

Q(:,j) = Q(:,j) - R(i,j)*Q(:,i);

end;

end;

end

octave]

DATA COMPRESSION 3

Note that the normalization condition ��

ii

�=1 is satisifed by two values ±r

ii

, so results from the above implementation

might give orthogonal vectors �

1

, . . . ,�

n

of di�erent orientations than those returned by the Octave qr function. The

implementation provided by computational packages such as Octave contain many re�nements of the basic algorithm

and it's usually preferable to use these in applications.

octave] A=rand(4); [Q,R]=mgs(A); disp([Q R])

0.82757 -0.25921 -0.49326 0.06802 0.83553 0.64827 1.24651

1.05301

0.19408 0.53127 0.15805 0.80939 0.00000 0.93177 0.82700

0.87551

0.22006 0.79553 -0.12477 -0.55058 0.00000 0.00000 0.38433

-0.20336

0.47857 -0.13302 0.84625 -0.19270 0.00000 0.00000 0.00000

0.42469

octave] [Q1,R1]=qr(A); disp([Q1 R1])

-0.82757 0.25921 -0.49326 -0.06802 -0.83553 -0.64827 -1.24651

-1.05301

-0.19408 -0.53127 0.15805 -0.80939 0.00000 -0.93177 -0.82700

-0.87551

-0.22006 -0.79553 -0.12477 0.55058 0.00000 0.00000 0.38433

-0.20336

-0.47857 0.13302 0.84625 0.19270 0.00000 0.00000 0.00000

-0.42469

octave] disp([norm(A-Q*R) norm(A-Q1*R1)])

1.1102e-16 8.0390e-16

octave]

By analogy to arithmetic and polynomial algebra, the Gram-Schmidt algorithm furnishes a factorization

xy=h

with x��

m×n

with orthonormal columns and y��

n×n

an upper triangular matrix, known as the QR-factorization.

Since the column vectors within x were obtained through linear combinations of the column vectors of h we have

C(h)=C(x)`C(y)

h�=i,h[
�

1

. . . �

n

]=[
h�

1

. . . h�

n

].

The QR-factorization can be used to solve basic problems within linear algebra.

octave] A=[3 2; 1 2]

A =

3 2

1 2

octave] [Q R]=qr(A)

Q =

-0.94868 -0.31623

-0.31623 0.94868

R =

-3.16228 -2.52982

0.00000 1.26491

octave]

3. QR solution of linear algebra problems

3.1. Transformation of coordinates

Recall that when given a vector ���

m

, an implicit basis is assumed, the canonical basis given by the column vectors

of the identity matrix p��

m×m

. The coordinates � in another basis h��

m×m

can be found by solving the equation

p�=�=h�,

by an intermediate change of coordinates to the orthogonal basisx. Since the basisx is orthogonal the relationx

T

x=

p holds, and changes of coordinates from p to x, x�=�, are easily computed �=x

T

�. Since matrix multiplication is

associative

�=h�=(xy)�=x (y�),

the relations y�=x

T

�=� are obtained, stating that � also contains the coordinates of � in the basis y. The three steps

are:

1. Compute the QR-factorization, xy=h;

2. Find the coordinates of � in the orthogonal basis x, �=x

T

�;

3. Find the coordinates of � in basis y, y�=�.

Since y is upper-triangular,

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

r

11

r

12

r

13

. . . r

1m

0 r

22

r

23

. . . r

2m

0 0 r

33

. . . r

3m

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 0 r

mm

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

Å

Å

Å

x

m�1

x

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

c

1

c

2

Å

Å

Å

c

m�1

c

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

the coordinates of � in the y basis are easily found by back substitution.

DATA COMPRESSION 5

Algorithm (Back substitution)

Given R upper-triangular, vectors �

for i=m down to 1

if r

ii

<� break;

x

i

=c

i

/r

ii

for j= i-1 down to 1

c

j

=c

j

� r

ji

x

i

end

end

return �

octave] function x=bcks(R,c)

[m,n]=size(R); x=zeros(m,1);

for i=m:-1:1

x(i) = c(i)/R(i,i);

for j=i-1:-1:1

c(j) = c(j) - R(j,i)*x(i);

end;

end;

end

octave]

The above operations are carried out in the background by the Octave backslash operation A\b to solve A*x=b,

inspired by the scalar mnemonic ax=bÒx=(1/a)b. Again, many additional re�nements of the basic algorithm argue

for using the built-in Octave functions, even though the above implementations can be veri�ed as correct.

octave] xex=rand(4,1); b=A*xex; [Q,R]=mgs(A); c=Q'*b; x=bcks(R,c); xO=A\b;

octave] disp([xex x xO])

 0.96838 0.96838 0.96838

 0.31829 0.31829 0.31829

 0.58529 0.58529 0.58529

 0.38250 0.38250 0.38250

octave]

3.2. General orthogonal bases

The above approch for the real vector space�

m

can be used to determine orthogonal bases for any other vector space

by appropriate modi�cation of the scalar product. For example, within the space of smooth functions�

�

[�1,1] that

can di�erentiated an arbitrary number of times, the Taylor series

f (x)= f (0) Å1+ f

2

(0) Åx+

1

2

f

22

(0) Åx

2

+ Å Å Å+

1

n!

f

(n)

(0) Åx

n

+ Å Å Å+

is seen to be a linear combination of the monomial basis t= �

1 x x

2

. . .

� with scaling coe�cients µ f (0), f

2

(0),

1

2

f

22

(0), . . .¶. The scalar product

(f ,g)=5

�1

1

f (x)g(x)dx

can be seen as the extension to the [�1,1] continuum of a the vector dot product. Orthogonalization of the monomial

basis with the above scalar product leads to the de�nition of another family of polynomials, known as the Legendre

polynomials

Q

0

(x)=±

1

2

²

1/2

Å1,Q

1

(x)=±

3

2

²

1/2

Åx,Q

2

(x)=±

5

8

²

1/2

Å (3x

2

�1),Q

4

(x)=±

7

8

²

1/2

Å (5x

3

�3x),

The Legendre polynomials are usually given with a di�erent scaling such that P

k

(1) =1, rather than the unit norm

condition �Q

k

�= (Q

k

,Q

k

)

1/2

= 1. The above results can be recovered by sampling of the interval [�1, 1] at points

x

i

=(i�1)h�1, h=2/(m�1), i=1, . . . ,m, by approximation of the integral by a Riemann sum

5

�1

1

f (x)L

j

(x)dxEhy

i=1

m

f (x

i

)L

j

(x

i

)=h �

T

s

j

.

octave] m=50; h=2/(m-1); x=(-1:h:1)'; M=[x.^0 x.^1 x.^2 x.^3 x.^4];

[Q,R]=mgs(M);

S=diag(1./Q(m,:)); P=Q*S; sc=[-1 1 -1 1];

figure(1); plot(x,M(:,1),x,M(:,2),x,M(:,3),x,M(:,4)); axis(sc);

grid on;

figure(2); plot(x,P(:,1),x,P(:,2),x,P(:,3),x,P(:,4)); axis(sc);

grid on;

octave]

? ?
Figure 2. Comparison of monomial basis (left) to Legendre polynomial basis (right). The �resolution� of P

3

(x) can be interpreted as the

number of crossings of the y=0 ordinate axis, and is greater than that of the corresponding monomial x

3

.

3.3. Least squares

The approach to compressing data D={(x

i

,y

i

)| i=1,...,m} suggested by calculus concepts is to form the sum of squared

di�erences between y(x

i

) and y

i

, for example for y(x)=a

0

+a

1

x when carrying out linear regression,

S(a

0

,a

1

)=y

i=1

m

(y(x

i

)�y

i

)

2

=y

i=1

m

(a

0

+a

1

x

i

�y

i

)

2

and seek (a

0

,a

1

) that minimize S(a

0

,a

1

). The function S(a

0

,a

1

)~0 can be thought of as the height of a surface above

the a

0

a

1

plane, and the gradient �S is de�ned as a vector in the direction of steepest slope. When at some point on the

surface if the gradient is di�erent from the zero vector �S`Î, travel in the direction of the gradient would increase

the height, and travel in the opposite direction would decrease the height. The minimal value of S would be attained

when no local travel could decrease the function value, which is known as stationarity condition, stated as �S=0.

Applying this to determining the coe�cients (a

0

,a

1

) of a linear regression leads to the equations

�S

�a

0

=0Ò2y

i=1

m

(a

0

+a

1

x

i

�y

i

)=0Ôma

0

+

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

i=1

m

x

i

)

)

)

)

)

)

)

)

)

)

)

)

)

)

a

1

=y

i=1

m

y

i

,

�S

�a

1

=0Ò2y

i=1

m

(a

0

+a

1

x

i

�y

i

)x

i

=0Ô

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

i=1

m

x

i

)

)

)

)

)

)

)

)

)

)

)

)

)

)

a

0

+

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

i=1

m

x

i

2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

a

1

=y

i=1

m

x

i

y

i

.

DATA COMPRESSION 7

The above calculations can become tedious, and do not illuminate the geometrical essence of the calculation, which

can be brought out by reformulation in terms of a matrix-vector product that highlights the particular linear combi-

nation that is sought in a liner regression. Form a vector of errors with components e

i

= y(x

i

)� y

i

, which for linear

regression is y(x)=a

0

+a

1

x. Recognize that y(x

i

) is a linear combination of 1 and x

i

with coe�cients a

0

,a

1

, or in vector

form

�=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 x

1

Å

Å

Å

Å

Å

Å

1 x

m

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(

(

(

(

(

(

(

a

0

a

1

)

)

)

)

)

)

)

��=(
Ï �

)���=h���

The norm of the error vector ��� is smallest when h� is as close as possible to �. Since h� is within the column space

of C(h), h��C(h), the required condition is for � to be orthogonal to the column space

�¥C(h)Òh

T

�=

(

(

(

(

(

(

(

(

(

(

(

(

Ï

T

�

T

)

)

)

)

)

)

)

)

)

)

)

)

�=

(

(

(

(

(

(

(

(

(

(

(

(

Ï

T

�

�

T

�

)

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

0

0

)

)

)

)

)

)

)

=Î

h

T

�=ÎÔh

T

(h���)=0Ô (h

T

h)�=h

T

�=�.

The above is known as the normal system, with u=h

T

h is the normal matrix. The system u�=� can be interpreted

as seeking the coordinates in the u =h

T

h basis of the vector �=h

T

�. An example can be constructed by randomly

perturbing a known function y(x)=a

0

+a

1

x to simulate measurement noise and compare to the approximate �

Ü

obtained

by solving the normal system.

1. Generate some data on a line and perturb it by some random quantities

octave] m=100; x=(0:m-1)/m; a=[2; 3];

a0=a(1); a1=a(2); yex=a0+a1*x; y=(yex+rand(1,m)-0.5)';

octave]

2. Form the matrices h, u=h

T

h, vector �=h

T

�

octave] A=ones(m,2); A(:,2)=x(:); N=A'*A; b=A'*y;

octave]

3. Solve the system u�=�, and form the linear combination �

Ü

=h� closest to �

octave] atilde=N\b; disp([a atilde]);

2.0000 2.0302

3.0000 2.9628

octave]

The normal matrix basis u=h

T

h can however be an ill-advised choice. Consider h��

2×2

given by

h=[
�

1

�

2

]=ã

1 cos�

0 sin�

ä,

where the �rst column vector is taken from the identity matrix �

1

=�

1

, and second is the one obtained by rotating it with

angle �. If �=�/2, the normal matrix is orthogonal, h

T

h= p, but for small �, h and u=h

T

h are approximated as

hE
ã

1 1

0 �

ä
,u=[

�

1

�

2

]=

[

[

[

[

[

[

[

[

[

[

1 1

0 �

2

]

]

]

]

]

]

]

]

]

]

.

When � is small �

1

, �

2

are almost colinear, and �

1

,�

2

even more so. This can lead to ampli�cation of small errors,

but can be avoided by recognizing that the best approximation in the 2-norm is identical to the Euclidean concept of

orthogonal projection. The orthogonal projector ontoC(h) is readily found byQR-factorization, and the steps to solve

least squares become

1. Compute xy=h

2. The projection of � onto the column space of h is �=xx

T

�, and has coordinates �=x

T

� in the orthogonal

basis x.

3. The same � can also obtained by linear combination of the columns of h, �=h�=xx

T

�, and replacing h

with its QR-factorization gives xy�=x�, that leads to the system y�=�, solved by back-substitution.

octave] [Q,R]=qr(A); c=Q'*y; aQR=R\c; disp([a atilde aQR])

2.0000 2.0302 2.0302

3.0000 2.9628 2.9628

octave]

The above procedure carried over to approximation by higher degree polynomials.

octave] m=100; n=6; x=(0:m-1)/m; x=x'; a=randi(10,n,1); A=[];

for j=1:n

A = [A x.^(j-1)];

end;

yex=A*a; y=yex+(rand(m,1)-0.5);

octave] N=A'*A; b=A'*y; atilde=inv(N)*b;

[Q,R]=qr(A); c=Q'*y; aQR=R\c;

disp([a atilde aQR]);

8.0000 8.0847 8.0847

8.0000 7.1480 7.1480

4.0000 4.2264 4.2264

4.0000 8.7568 8.7568

10.0000 2.7420 2.7420

6.0000 9.0386 9.0386

octave]

�

�

hx

C(h)

Givendata�, formh,�nd�, such that ���= �h���� isminimized

�=��h�

DATA COMPRESSION 9

	Data Compression
	1. Projection
	2. Gram-Schmidt
	3. Q R solution of linear algebra problems
	3.1. Transformation of coordinates
	3.2. General orthogonal bases
	3.3. Least squares

