
CHAPTER 1
LEAST SQUARES

DATA COMPRESSION

A typical scenario in many sciences is acquisition of m numbers to describe some object that is understood to
actually require only n≪m parameters. For example, m voltage measurements ui of an alternating current could
readily be reduced to three parameters, the amplitude, phase and frequency u(t)=asin(ωt +φ). Very osten a simple
first-degree polynomial approximation y = ax +b is sought for a large data set D = {(xi,yi), i =1, . . . ,m}. All of these
are instances of data compression, a problem that can be solved in a linear algebra framework.

1. Projection
Consider a partition of a vector space U into orthogonal subspaces U =V ⊕W , V =W⊥,W =V ⊥. Within the typical
scenario described above U =ℝm, V ⊂ℝm,W ⊂ℝm, dimV =n, dimW =m−n. If V =� v1 . . . vn �∈ℝm×n is a basis for V
andW =� w1 . . . wm−n �∈ℝm×(m−n) is a basis for W, then U =� v1 . . . vn w1 . . . wm−n � is a basis for U . Even though
the matrices V ,W are not necessarily square, they are said to be orthogonal, in the sense that all columns are of
unit norm and orthogonal to one another. Computation of the matrix product V TV leads to the formation of the
identity matrix within ℝn

V TV =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[ v1T

v2T

⋅⋅⋅
vnT ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
� v1 v2 . . . vn �=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[ v1Tv1 v1Tv2 . . . v1Tvn
v2Tv1 v2Tv2 . . . v2Tvn
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

vnTv1 vnTv2 . . . vnTvn ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]

]

]
= In.

Similarly, W TW = Im−n. Whereas for the square orthogonal matrix U multiplication both on the lest and the right
by its transpose leads to the formation of the identity matrix

U TU =UU T = Im,

the same operations applied to rectangular orthogonal matrices lead to different results

V TV = In,VV T = � v1 v2 . . . vn �

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[ v1T

v2T

⋅⋅⋅
vnT ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
=�

i=1

n

vivi
T , rank(v iv iT )=1

A simple example is provided by taking V = Im,n, the first n columns of the identity matrix in which case

VV T =�
i=1

n

ei ei
T = [[[[[[[[[ In 0

0 0 ]]]]]]]]]∈ℝm×m.

Applying P =VV T to some vector b ∈ℝm leads to a vector r =Pb whose first n components are those of b , and the
remainingm−n are zero. The subtraction b − r leads to a new vector s = (I −P )b that has the first components equal
to zero, and the remaining m − n the same as those of b . Such operations are referred to as projections, and for
V = Im,n correspond to projection onto the span{e1, . . . ,en}.

octave] I4=eye(5); V=I4(:,1:2); P=V*V'; Q=I4-P;
b=rand(5,1); r=P*b; s=Q*b; disp([P b r s])

1.00000 0.00000 0.00000 0.00000 0.00000 0.42253 0.42253 0.00000
0.00000 1.00000 0.00000 0.00000 0.00000 0.95900 0.95900 0.00000
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0.00000 0.00000 0.00000 0.00000 0.00000 0.41781 0.00000 0.41781
0.00000 0.00000 0.00000 0.00000 0.00000 0.45744 0.00000 0.45744
0.00000 0.00000 0.00000 0.00000 0.00000 0.49784 0.00000 0.49784

octave]

U =ℝ2

W = {{{{{{{{{{{{{{{{{{[[[[[[[[[ 0y ]]]]]]]]]|y ∈ℝ}}}}}}}}}}}}}}}}}}

V = {{{{{{{{{{{{{{{{{{[[[[[[[[[ x0 ]]]]]]]]]| x ∈ℝ}}}}}}}}}}}}}}}}}}

b

r =Pb

s = (I −P )b

Figure 1.1. Projection in ℝ2. The vectors r , s ∈ℝ2 have two components, but could be expressed through scaling of e1,e2.

Returning to the general case, the orthogonal matrices U ∈ℝm×m, V ∈ℝm×n, W ∈ℝm×(m−n) are associated with linear
mappings b = f (x )=Ux , r = g (b)=Pb , s =h (b )= (I −P ) b . The mapping f gives the components in the I basis of a
vector whose components in the U basis are x . The mappings g ,h project a vector onto span{v1, . . . ,vn}, span{w1, . . . ,
wm−n}, respectively. When V ,W are orthogonal matrices the projections are also orthogonal r⊥ s . Projection can
also be carried out onto nonorthogonal spanning sets, but the process is fraught with possible error, especially
when the angle between basis vectors is small, and will be avoided henceforth.

Notice that projection of a vector already in the spanning set simply returns the same vector, which leads to a
general definition.

DEFINITION. The mapping is called a projection if f ∘f = f, or if for any u ∈U, f (f (u ))= f (u ). With P the matrix associated
f, a projection matrix satisfies P 2=P.

P =VV T

P 2=PP =VV TVV T =V (V TV )V T =VIV T =VV T =P

2. Gram-Schmidt
Orthonormal vector sets {q1,..., qn} are of the greatest practical utility, leading to the question of whether some such
a set can be obtained from an arbitrary set of vectors {a1, . . . ,an}. This is possible for independent vectors, through
what is known as the Gram-Schmidt algorithm

1. Start with an arbitrary direction a1

2. Divide by its norm to obtain a unit-norm vector q1= a1/‖a1‖

3. Choose another direction a2

4. Subtract off its component along previous direction(s) a2− (q1
Ta2)q1

5. Divide by norm q2= (a2− (q1Ta2)q1)/‖a2− (q1Ta2)q1‖
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6. Repeat the above

a1

a2

q1

q2

a2− (q1
Ta2)q1

P1a2= (q1 q1
T )a2= q1 (q1

Ta2)= (q1
Ta2) q1

The above geometrical description can be expressed in terms of matrix operations as

A = ( a1 a2 . . . an )= ( q1 q2 . . . qn )

((((((((((((((((
(((((((((((((((
(((((((((((((((
(

(

( r11 r12 r13 . . . r1n
0 r22 r23 . . . r2n
0 0 r33 . . . r3n
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . . . . rmn ))))))))))))))))

)))))))))))))))
)))))))))))))))
)

)

)
=QR ,

equivalent to the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{
{
{ a1= r11q1
a2= r12q1+ r22q2
⋅⋅⋅
an= r1nq1+ r2nq2+ . . . + rnnqn

.

The system is easily solved by forward substitution resulting in what is known as the (modified) Gram-Schmidt
algorithm, transcribed below both in pseudo-code and in Octave.

Algorithm (Gram-Schmidt)

Given n vectors a1, . . . ,an
Initialize q1= a1,..,qn= an, R = In
for i =1 to n
rii = (q i

Tqi)1/2
if rii <ϵ break;
q i = qi /rii
for j = i+1 to n
rij = q i

T aj; qj = qj − rijq i

end
end
return Q ,R

octave] function [Q,R] = mgs(A)
[m,n]=size(A); Q=A; R=eye(n);
for i=1:n

R(i,i) = sqrt(Q(:,i)'*Q(:,i));
if (R(i,i)<eps) break;
Q(:,i) = Q(:,i)/R(i,i);
for j=i+1:n
R(i,j) = Q(:,i)'*A(:,j);
Q(:,j) = Q(:,j) - R(i,j)*Q(:,i);

end;
end;

end
octave]

Note that the normalization condition ‖q ii‖=1 is satisifed by two values ±rii, so results from the above implementa-
tion might give orthogonal vectors q1,..., qn of different orientations than those returned by the Octave qr function.
The implementation provided by computational packages such as Octave contain many refinements of the basic
algorithm and it's usually preferable to use these in applications.
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octave] A=rand(4); [Q,R]=mgs(A); disp([Q R])

0.82757 -0.25921 -0.49326 0.06802 0.83553 0.64827 1.24651 1.05301
0.19408 0.53127 0.15805 0.80939 0.00000 0.93177 0.82700 0.87551
0.22006 0.79553 -0.12477 -0.55058 0.00000 0.00000 0.38433 -0.20336
0.47857 -0.13302 0.84625 -0.19270 0.00000 0.00000 0.00000 0.42469

octave] [Q1,R1]=qr(A); disp([Q1 R1])

-0.82757 0.25921 -0.49326 -0.06802 -0.83553 -0.64827 -1.24651 -1.05301
-0.19408 -0.53127 0.15805 -0.80939 0.00000 -0.93177 -0.82700 -0.87551
-0.22006 -0.79553 -0.12477 0.55058 0.00000 0.00000 0.38433 -0.20336
-0.47857 0.13302 0.84625 0.19270 0.00000 0.00000 0.00000 -0.42469

octave] disp([norm(A-Q*R) norm(A-Q1*R1)])

1.1102e-16 8.0390e-16

octave]

By analogy to arithmetic and polynomial algebra, the Gram-Schmidt algorithm furnishes a factorization

QR =A

with Q ∈ℝm×n with orthonormal columns and R ∈ℝn×n an upper triangular matrix, known as the QR-factorization.
Since the column vectors within Q were obtained through linear combinations of the column vectors of A we have

C(A)=C(Q )≠C(R )

AX =B ,A� x1 . . . xn �= � Ax1 . . . Axn �.

The QR-factorization can be used to solve basic problems within linear algebra.

3. QR solution of linear algebra problems

3.1. Transformation of coordinates

Recall that when given a vector b ∈ℝm, an implicit basis is assumed, the canonical basis given by the column vectors
of the identity matrix I ∈ℝm×m. The coordinates x in another basis A ∈ℝm×m can be found by solving the equation

Ib =b =Ax ,

by an intermediate change of coordinates to the orthogonal basis Q . Since the basis Q is orthogonal the relation
Q TQ = I holds, and changes of coordinates from I to Q , Qc =b , are easily computed c =Q Tb . Since matrix multi-
plication is associative

b =Ax = (QR )x =Q (Rx ),

the relations Rx =Q Tb = c are obtained, stating that x also contains the coordinates of c in the basis R . The three
steps are:

1. Compute the QR-factorization, QR =A ;

2. Find the coordinates of b in the orthogonal basis Q , c =Q Tb ;

3. Find the coordinates of x in basis R , Rx = c .

Since R is upper-triangular,

(((((((((((((((
(((((((((((((((
(((((((((((((((
((

(

( r11 r12 r13 . . . r1m
0 r22 r23 . . . r2m
0 0 r33 . . . r3m
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 . . . . . . rmm )))))))))))))))

)))))))))))))))
)))))))))))))))
))

)

)

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[ x1
x2
⋅⋅⋅

xm−1
xm ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]
=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

[

[ c1
c2
⋅⋅⋅

cm−1
cm ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]

]

]

the coordinates of c in the R basis are easily found by back substitution.
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Algorithm (Back substitution)

Given R upper-triangular, vectors c
for i =m down to 1
if rii <ϵ break;
xi = ci /rii
for j = i-1 down to 1
cj = cj − rji xi

end
end
return x

octave] function x=bcks(R,c)
[m,n]=size(R); x=zeros(m,1);
for i=m:-1:1
x(i) = c(i)/R(i,i);
for j=i-1:-1:1

c(j) = c(j) - R(j,i)*x(i);
end;

end;
end

octave]

The above operations are carried out in the background by the Octave backslash operation A\b to solve A*x=b,
inspired by the scalar mnemonic ax =b⇒ x = (1/a) b. Again, many additional refinements of the basic algorithm
argue for using the built-in Octave functions, even though the above implementations can be verified as correct.

octave] xex=rand(4,1); b=A*xex; [Q,R]=mgs(A); c=Q'*b; x=bcks(R,c); xO=A\b;
octave] disp([xex x xO])

   0.96838   0.96838   0.96838
   0.31829   0.31829   0.31829
   0.58529   0.58529   0.58529
   0.38250   0.38250   0.38250

octave] 

3.2. General orthogonal bases

The above approch for the real vector space ℛm can be used to determine orthogonal bases for any other vector
space by appropriate modification of the scalar product. For example, within the space of smooth functions 𝒞∞[−1,
1] that can differentiated an arbitrary number of times, the Taylor series

f (x)= f (0) ⋅ 1+ f ʹ(0) ⋅x + 1
2 f ʹʹ(0) ⋅x 2+ ⋅ ⋅ ⋅ + 1

n! f
(n)(0) ⋅x n+ ⋅ ⋅ ⋅ +

is seen to be a linear combination of the monomial basis M = � 1 x x 2 . . . � with scaling coefficients � f (0), f ʹ(0),
1
2 f ʹʹ(0), . . .�. The scalar product

( f ,g)=�
−1

1
f (x)g(x)dx

can be seen as the extension to the [−1, 1] continuum of a the vector dot product. Orthogonalization of the mono-
mial basis with the above scalar product leads to the definition of another family of polynomials, known as the
Legendre polynomials

Q0(x)=�1
2�1/2 ⋅ 1,Q1(x)=� 3

2�1/2 ⋅x ,Q2(x)=� 5
8�1/2 ⋅ (3x 2−1),Q4(x)=� 7

8�1/2 ⋅ (5x 3−3x), . . . .

The Legendre polynomials are usually given with a different scaling such that Pk(1)=1, rather than the unit norm
condition ‖Qk‖ = (Qk,Qk)1/2 = 1. The above results can be recovered by sampling of the interval [−1, 1] at points
xi = (i−1)h−1, h=2/(m−1), i =1, . . . ,m, by approximation of the integral by a Riemann sum

�
−1

1
f (x)Lj(x)dx ≅h�

i=1

m

f (xi)Lj(xi)=hf TLj.

octave] m=50; h=2/(m-1); x=(-1:h:1)'; M=[x.^0 x.^1 x.^2 x.^3 x.^4]; [Q,R]=mgs(M);
S=diag(1./Q(m,:)); P=Q*S; sc=[-1 1 -1 1];
figure(1); plot(x,M(:,1),x,M(:,2),x,M(:,3),x,M(:,4)); axis(sc); grid on;
figure(2); plot(x,P(:,1),x,P(:,2),x,P(:,3),x,P(:,4)); axis(sc); grid on;
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octave]

? ?
Figure 1.2. Comparison of monomial basis (lest) to Legendre polynomial basis (right). The “resolution” of P3(x ) can be interpreted as
the number of crossings of the y =0 ordinate axis, and is greater than that of the corresponding monomial x 3.

3.3. Least squares

The approach to compressing data D = {(xi,yi)| i = 1, . . . ,m} suggested by calculus concepts is to form the sum of
squared differences between y (xi) and yi, for example for y (x)=a0+a1x when carrying out linear regression,

S(a0,a1)=�
i=1

m

(y (xi)−yi)2=�
i=1

m

(a0+a1xi −yi)2

and seek (a0,a1) that minimize S(a0,a1). The function S(a0,a1)�0 can be thought of as the height of a surface above
the a0a1 plane, and the gradient ∇S is defined as a vector in the direction of steepest slope. When at some point
on the surface if the gradient is different from the zero vector ∇S ≠0, travel in the direction of the gradient would
increase the height, and travel in the opposite direction would decrease the height. The minimal value of S would
be attained when no local travel could decrease the function value, which is known as stationarity condition, stated
as ∇S =0. Applying this to determining the coefficients (a0,a1) of a linear regression leads to the equations

∂S
∂a0

=0⇒2�
i=1

m

(a0+a1xi −yi)=0⇔ma0+ (((((((((((((�
i=1

m

xi)))))))))))))a1=�
i=1

m

yi,

∂S
∂a1

=0⇒2�
i=1

m

(a0+a1xi −yi)xi =0⇔(((((((((((((�
i=1

m

xi)))))))))))))a0+ (((((((((((((�
i=1

m

xi
2)))))))))))))a1=�

i=1

m

xi yi.

The above calculations can become tedious, and do not illuminate the geometrical essence of the calculation, which
can be brought out by reformulation in terms of a matrix-vector product that highlights the particular linear com-
bination that is sought in a liner regression. Form a vector of errors with components ei =y (xi)−yi, which for linear
regression is y (x)= a0+ a1x . Recognize that y (xi) is a linear combination of 1 and xi with coefficients a0, a1, or in
vector form

e = ((((((((((((((((
((((
(
( 1 x1
⋅⋅⋅ ⋅⋅⋅
1 xm ))))))))))))))))

))))
)
)((((((((( a0a1 )))))))))− y = ( 1 x )a − y =Aa − y
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The norm of the error vector ‖e‖ is smallest when Aa is as close as possible to y . Since Aa is within the column
space of C(A), Aa ∈C(A), the required condition is for e to be orthogonal to the column space

e⊥C(A)⇒ATe = (((((((((((((
1T

xT )))))))))))))e = (((((((((((((
1Te
xTe )))))))))))))= ((((((((( 00 )))))))))=0

ATe =0⇔AT (Aa − y )=0⇔ (ATA)a =ATy =b .

The above is known as the normal system, with N =ATA is the normal matrix. The system Na =b can be interpreted
as seeking the coordinates in the N =ATA basis of the vector b =ATy . An example can be constructed by randomly
perturbing a known function y (x) = a0+ a1 x to simulate measurement noise and compare to the approximate ã
obtained by solving the normal system.

1. Generate some data on a line and perturb it by some random quantities

octave] m=100; x=(0:m-1)/m; a=[2; 3];
a0=a(1); a1=a(2); yex=a0+a1*x; y=(yex+rand(1,m)-0.5)';

octave]

2. Form the matrices A, N =ATA, vector b =ATy

octave] A=ones(m,2); A(:,2)=x(:); N=A'*A; b=A'*y;
octave]

3. Solve the system Na =b , and form the linear combination ỹ =Aa closest to y

octave] atilde=N\b; disp([a atilde]);

2.0000 2.0302
3.0000 2.9628

octave]

The normal matrix basis N =ATA can however be an ill-advised choice. Consider A ∈ℝ2×2 given by

A = � a1 a2 �= [[[[[[[[[ 1 cosθ
0 sinθ ]]]]]]]]],

where the first column vector is taken from the identity matrix a1=e1, and second is the one obtained by rotating it
with angle θ . If θ =π /2, the normal matrix is orthogonal, ATA= I , but for small θ , A and N =ATA are approximated as

A ≅ [[[[[[[[[ 1 1
0 θ ]]]]]]]]],N = � n1 n2 �= [[[[[[[[[[[ 1 1

0 θ 2 ]]]]]]]]]]].
When θ is small a1, a2 are almost colinear, and n1,n2 even more so. This can lead to amplification of small errors,
but can be avoided by recognizing that the best approximation in the 2-norm is identical to the Euclidean concept
of orthogonal projection. The orthogonal projector onto C(A) is readily found by QR-factorization, and the steps
to solve least squares become

1. Compute QR =A

2. The projection of y onto the column space of A is z =QQ Ty , and has coordinates c =Q Ty in the orthogonal
basis Q .

3. The same z can also obtained by linear combination of the columns of A, z =Aa =QQ T y , and replacing A
with its QR-factorization gives QRa =Qc , that leads to the system Ra = c , solved by back-substitution.

octave] [Q,R]=qr(A); c=Q'*y; aQR=R\c; disp([a atilde aQR])

2.0000 2.0302 2.0302
3.0000 2.9628 2.9628

octave]
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The above procedure carried over to approximation by higher degree polynomials.

octave] m=100; n=6; x=(0:m-1)/m; x=x'; a=randi(10,n,1); A=[];
for j=1:n
A = [A x.^(j-1)];

end;
yex=A*a; y=yex+(rand(m,1)-0.5);

octave] N=A'*A; b=A'*y; atilde=inv(N)*b;
[Q,R]=qr(A); c=Q'*y; aQR=R\c; 
disp([a atilde aQR]);

8.0000 8.0847 8.0847
8.0000 7.1480 7.1480
4.0000 4.2264 4.2264
4.0000 8.7568 8.7568
10.0000 2.7420 2.7420
6.0000 9.0386 9.0386

octave]

y

e
Aa C(A)

Givendata y , formA,find a , suchthat‖e‖=‖Aa − y‖ isminimized

MODEL REDUCTION

1. Projection of mappings
The least-squares problem

min
x∈ℝn

‖y −Ax‖ (1.1)

focuses on a simpler representation of a data vector y ∈ℝm as a linear combination of column vectors of A ∈ℝm×n.
Consider some phenomenonmodeled as a function between vector spaces f :X→Y , such that for input parameters
x ∈X , the state of the system is y = f (x ). For most models f is differentiable, a transcription of the condition that
the system should not exhibit jumps in behavior when changing the input parameters. Then by appropriate choice
of units and origin, a linearized model

y =Ax , A ∈ℝm×n,
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is obtained if y ∈C(A), expressed as (1) if y ∉C(A).

A simpler description is osten sought, typically based on recognition that the inputs and outputs of the model
can themselves be obtained as linear combinations x =Bu , y =C v , involving a smaller set of parameters u ∈ℝq,
v ∈ℝp, p <m, q <n. The column spaces of the matrices B ∈ℝn×q, C ∈ℝm×p are vector subspaces of the original set
of inputs and outputs, C(B )≤ℝn, C(C )≤ℝm. The sets of column vectors of B ,C each form a reduced basis for the
system inputs and outputs if they are chosed to be of full rank. The reduced bases are assumed to have been
orthonormalized through the Gram-Schmidt procedure such that BTB = Iq, and CTC = Ip. Expressing the model
inputs and outputs in terms of the reduced basis leads to

Cv =ABu⇒v =CTABu⇒v =Ru .

The matrix R =CT AB is called the reduced system matrix and is associated with a mapping g :U→V , that is a
restriction to the U ,V vector subspaces of the mapping f . When f is an endomorphism, f :X→X , m =n, the same
reduced basis is used for both inputs and outputs, x =Bu , y =Bv , and the reduced system is

v =Ru ,R =BTAB .

Since B is assumed to be orthogonal, the projector onto C(B ) is PB =BBT . Applying the projector on the inital model

PBy =PBAx

leads to BBT y =BBTAx , and since v =BT y the relation Bv =BBTABu is obtained, and conveniently grouped as

Bv =B (BTAB )u ⇒Bv =B (Ru ),

again leading to the reduced model v =Bu . The above calculation highlights that the reduced model is a projection
of the full model y =Ax on C(B ).

2. Reduced bases

2.1. Correlation matrices

Correlation coefficient. Consider two functions x1,x2:ℝ→ℝ, that represent data streams in time of inputs x1(t)
and outputs x2(t) of some system. A basic question arising in modeling and data science is whether the inputs
and outputs are themselves in a functional relationship. This usually is a consequence of incomplete knowledge
of the system, such that while x1, x2 might be assumed to be the most relevant input, output quantities, this is
not yet fully established. A typical approach is to then carry out repeated measurements leading to a data set
D = {(x1(ti),x2(ti))| i=1,...,N}, thus defining a relation. Let x1,x2∈ℝN denote vectors containing the input and output
values. The mean values μ1,μ2 of the input and output are estimated by the statistics

μ1≅ x̄1=
1
N

�
i=1

N

x1(ti)=E [x1],μ2≅ x̄2=
1
N

�
i=1

N

x2(ti)=E [x2],

where E is the expectation seen to be a linear mapping, E :ℝN →ℝ whose associated matrix is

E =
1
N

� 1 1 . . . 1 �,

and the means are also obtained by matrix vector multiplication (linear combination),

x̄1=Ex1, x̄2=Ex2.

Deviation from the mean is measured by the standard deviation defined for x1,x2 by

σ1= E[(x1−μ1)2]� , σ2= E[(x2−μ2)2]� .

Note that the standard deviations are no longer linear mappings of the data.
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Assume that the origin is chosen such that x̄1= x̄2=0. One tool to estalish whether the relation D is also a function
is to compute the correlation coefficient

ρ(x1,x2)=
E[x1x2]
σ1σ2

=
E[x1x2]
E[x12]E[x22]�

,

that can be expressed in terms of a scalar product and 2-norm as

ρ(x1,x2)=
x1T x2

‖x1‖‖x2‖
.

Squaring each side of the norm property ‖x1+x2‖�‖x1‖+‖x2‖, leads to

(x1+x2)T (x1+x2)�x1Tx1+x2T x2+2‖ x1‖ ‖x2‖⇒ x1T x2�‖x1‖ ‖x2‖,

known as the Cauchy-Schwarz inequality, which implies −1�ρ(x1,x2)�1. Depending on the value of ρ, the variables
x1(t),x2(t) are said to be:

1. uncorrelated , if ρ=0;

2. correlated , if ρ=1;

3. anti-correlated , if ρ=−1.

The numerator of the correlation coefficient is known as the covariance of x1,x2

cov(x1,x2)=E[x1x2].

The correlation coefficient can be interpreted as a normalization of the covariance, and the relation

cov(x1,x2)=x1T x2=ρ(x1,x2)‖x1‖‖x2‖,

is the two-variable version of a more general relationship encountered when the system inputs and outputs become
vectors.

Patterns in data. Consider now a related problem, whether the input and output parameters x ∈ℝn, y ∈ℝm thought
to characterize a system are actually well chosen, or whether they are redundant in the sense that a more insightful
description is furnished by u ∈ℝq, v ∈ℝp with fewer components p <m, q < n. Applying the same ideas as in the
correlation coefficient, a sequence of N measurements is made leading to data sets

X = � x1 x2 . . . xn �∈ℝN×n,Y = � y1 y2 . . . yn �∈ℝN×m.

Again, by appropriate choice of the origin the means of the above measurements is assumed to be zero

E[x ]=0,E[y ]=0.
Covariance matrices can be constructed by

CX =X TX =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[ x1T

x2T

⋅⋅⋅
xnT ]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]]

]

]
� x1 x2 . . . xn �=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[[[

[

[ x1T x1 x1Tx2 . . . x1Txn
x2T x1 x2Tx2 . . . x2Txn
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

xnT x1 xnTx2 . . . xnTxn ]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]]]

]

]
∈ℝn×n.

Consider now the SVDs of CX =N ΛN T , X =U ΣS T , and from

CX =X TX = (U ΣS T )TU ΣS T =S ΣTU TU ΣS T =S ΣT ΣS T =N ΛN T ,

identify N =S , and Λ =ΣT Σ.

Recall that the SVD returns an order set of singular values σ1�σ2� ⋅ ⋅ ⋅ � , and associated singular vectors. In many
applications the singular values decrease quickly, osten exponentially fast. Taking the first q singular modes then
gives a basis set suitable for mode reduction

x =Sq u = � s1 s2 . . . sq �u .

10 LEAST SQUARES
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