
LINEARMAPPINGS

SYNOPSIS. Vectors have been introduced to represent complicated objects, whose description

requires m numbers, and the procedure of linear combination allows construction of new vec-

tors. Alternative insights into some object might be obtained by transformation of vectors. Of

all possible transformations, those that are compatible with linear combinations are of special

interest. It turns out that matrices are not only important in organizing collections of vectors,

but also to represent such transformations, referred to as linear mappings.

1. Functions

1.1. Relations

The previous chapter focused on mathematical expression of the concept of quanti�cation, the

act of associating human observation with measurements, as a �rst step of scienti�c inquiry.

Consideration of di�erent types of quantities led to various types of numbers, vectors as group-

ings of numbers, and matrices as groupings of vectors. Symbols were introduced for these quan-

tities along with some intial rules for manipulating such objects, laying the foundation for an

algebra of vectors and matrices. Science seeks to not only observe, but to also explain, which

now leads to additional operations for working with vectors and matrices that will de�ne the

framework of linear algebra.

Explanations within scienti�c inquiry are formulated as hypotheses, from which predictions are

derived and tested. A widely applied mathematical transcription of this process is to organize

hypotheses and predictions as two sets X and Y , and then construct another set R of all of the

instances in which an element of X is associated with an element in Y . The set of all possible

instances of x �X and y �Y , is the Cartesian product of X with Y , denoted as X ×Y ={(x ,y)|x �X ,

y � Y}, a construct already encountered in the de�nition of the real 2-space �

2

= (�

2

,�, +, Å)

where �

2

=� ×�. Typically, not all possible tuples (x , y) � X × Y are relevant leading to the

following de�nition.

DEFINITION. (RELATION) . A relation R between two sets X ,Y is a subset of the Cartesian product

X ×Y, R

�

�

X ×Y.

The key concept is that of associating an input x �X with an output y �Y . Inverting the approach

and associating an output to an input is also useful, leading to the de�nition of an inverse rela-

tion as R

�1

�

�

Y ×X , R

�1

= {(y ,x) | (x ,y)�R}. Note that an inverse exists for any relation, and the

inverse of an inverse is the original relation, (R

�1

)

�1

=R. From the above, a relation is a triplet (a

tuple with three elements), (X ,Y ,R), that will o�en be referred to by just its last member R.

Homogeneous relations. Many types of relations are de�ned in mathematics and encoun-

tered in linear algebra, and establishing properties of speci�c relations is an important task

within data science. A commonly encountered type of relationship is from a set onto itself,

known as a homogeneous relation. For homogeneous relations H

�

�

A×A, it is common to replace

the set membership notation (a,b)�H to state that a�A is in relationship H with b �A, with a

binary operator notation a
<
<

<

H

b. Familiar examples include the equality and less than relation-

ships between reals, E ,L

�

�

�×�, in which (a,b)�E is replaced by a=b, and (a,b)�L is replaced

by a<b. The equality relationship is its own inverse, and the inverse of the less than relationship

is the greater than relation G

�

�

�×�, G =L

�1

, a <bÒb >a.
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1.2. Functions

Functions between sets X and Y are a speci�c type of relationship that o�en arise in science. For

a given input x �X , theories that predict a single possible output y �Y are of particular scienti�c

interest.

DEFINITION. (FUNCTION) . A function from set X to set Y is a relation F

�

�

X ×Y, that associates to

x �X a single y �Y.

The above intuitive de�nition can be transcribed in precise mathematical terms as F

�

�

X ×Y is a

function if (x ,y)�F and (x ,z)�F implies y =z . Since it's a particular kind of relation, a function

is a triplet of sets (X , Y , F), but with a special, common notation to denote the triplet by f :

X�Y , with F ={(x , f (x))|x �X , f (x)�Y} and the property that (x ,y)�FÒy = f (x). The set X

is the domain and the set Y is the codomain of the function f . The value from the domain x �X

is the argument of the function associated with the function value y = f (x). The function value

y is said to be returned by evaluation y = f (x).

Whereas all relations can be inverted, and inversion of a function de�nes a new relation, but

which might not itself be a function. For example the relation S

�1

= {(± , a), (² , a), (³ , a)} is a

function, but its inverse (S

�1

)

�1

=S is not.

Familiar functions include:

" the trigonometric functions cos:�� [�1, 1], sin:�� [�1, 1] that for argument ¸ ��

return the function values cos(¸), sin(¸) giving the Cartesian coordinates (x ,y)��

2

of

a point on the unit circle at angular extent ¸ from the x-axis;

" the exponential and logarithm functions exp:���, log:(0,�)��, as well as power and

logarithm functions in some other base a;

" polynomial functions p

n

:���, de�ned by a succession of additions and multiplications

p

n

(x)=a

n

x

n

+a

n�1

x

n�1

+ Å Å Å +a

1

x +a

0

=y

i=0

n

a

i

x

i

= ((a

n

x +a

n�1

)x + Å Å Å +a

1

)x +a

0

.

Simple functions such as sin, cos, exp, log, are prede�ned in Julia, and can be applied to each

component of a vector argument by broadcasting, denoted by a period in front of the paranteses

enclosing the argument.

4 ¸=À; [sin(¸) cos(¸) exp(¸) log(¸)]

[ 0.0 �1.0 23.140692632779267 1.1447298858494002 ] (1)

4 ¸=0:À/6:À; short(x)=round(x,digits=6); short.(sin.(¸))'

[
0.0 0.5 0.866025 1.0 0.866025 0.5 0.0

] (2)

4 short.(log2.(1:8))'

[
0.0 1.0 1.584963 2.0 2.321928 2.584963 2.807355 3.0

] (3)
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A construct that will be o�en used is to interpret a vector within E

m

as a function, since v ��

m

with components v = [
v

1

v

2

. . . v

m

]

T

also de�nes a function v : {1, 2, . . . ,m}��, with values

v(i)=v

i

. As the number of components grows the function v can provide better approximations

of some continuous function f ��

0

(�) through the function values v

i

= v(i)= f (x

i

) at distinct

sample points x

1

,x

2

, . . . ,x

m

.

The above function examples are all de�ned on a domain of scalars or naturals and returned

scalar values. Within linear algebra the particular interest is on functions de�ned on sets of

vectors from some vector space ± = (V , S, +, Å) that return either scalars f :V� S, or vectors

from some other vector space ² = (W , S, +, Å), g :V �W . The codomain of a vector-valued

function might be the same set of vectors as its domain, h :V�V . The fundamental operation

within linear algebra is the linear combination au + bv with a, b � S, u , v �V . A key aspect is

to characterize how a function behaves when given a linear combination as its argument, for

instance f (au +bv) or g(au +bv).

1.3. Linear functionals

Consider �rst the case of a function de�ned on a set of vectors that returns a scalar value. These

can be interpreted as labels attached to a vector, and are very o�en encountered in applications

from natural phenomena or data analysis.

DEFINITION. (FUNCTIONAL) . A functional on vector space ±= (V ,S, +, Å) is a function from the set

of vectors V to the set of scalars S of the vector space±.

DEFINITION. (LINEAR FUNCTIONAL) . The functional f :V� S on vector space ±= (V , S, +, Å) is a

linear functional if for any two vectors u ,v �V and any two scalars a,b

f (au +bv)=af (u)+bf (v). (4)

1.4. Linear mappings

Consider now functions f :V�W from vector space ± = (V , S, +, Å) to another vector space

² = (W , T , +, Å). As before, the action of such functions on linear combinations is of special

interest.

DEFINITION. (LINEAR MAPPING) . A function f :V�W, from vector space ±= (V ,S, +, Å) to vector

space²=(W ,S, +, Å) is called a linear mapping if for any two vectors u ,v �V and any two scalars

a,b �S

f (au +bv)=af (u)+bf (v). (5)

The image of a linear combination au +bv through a linear mapping is another linear combina-

tion af (u)+bf (v), and linear mappings are said to preserve the structure of a vector space.

Note that f :��� de�ned as y = f (x)=ax +b represents a line in the (x ,y)-plane, but is not a

linear mapping for b `0 since

f (x + z)=a(x + z)+b `ax +b +az +b = f (x)+ f (z).
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Matrix-vector multiplication has been introduced as a concise way to specify a linear combina-

tion

f (x)=Ax =x

1

a

1

+ Å Å Å +x

n

a

n

,

with a

1

, . . . , a

n

the columns of the matrix, A = [ a

1

a

2

. . . a

n

]. This is a linear mapping between

the real spaces �

m

, �

n

, f :�

m

��

n

, and indeed any linear mapping between real spaces can be

given as a matrix-vector product. Consider some x ��

m

x =

[

[
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[
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[
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[

[

[

[

[

[

x

1

x

2

Å

Å

Å

x

m

]

]
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]

]
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1

[
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+x

2

[
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+ Å Å Å +x

m

[
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]
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]

]

]

]

]
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=x

1

e

1

+x

2

e

2

+ Å Å Å +x

m

e

m

.

Applying the linear mapping f to x leads to

f (x)= f (x

1

e

1

+x

2

e

2

+ Å Å Å +x

m

e

m

)=x

1

f (e

1

)+x

2

f (e

2

)+ Å Å Å +x

m

f (e

m

).

The matrix A with columns a

1

= f (e

1

), . . . , a

m

= f (e

m

) now allows �nding

f (x)=Ax ,

through a matrix-vector multiplication for any input vector x . The matrix A thus de�ned is

a representation of the linear mapping f . As will be shown later, it is not the only possible

representation.

2. Measurements

Vectors within the real space �

m

can be completely speci�ed by m real numbers, and m is large

in many realistic applications. The task of describing the elements of a vector space±= (V ,S,

+, Å) by simpler means arises. Within data science this leads to classi�cation problems in accor-

dance with some relevant criteria, and one of the simplest classi�cations is to attach a scalar

label to a vector. Commonly encountered labels include the magnitude of a vector or its orien-

tation with respect to another vector.

2.1. Norms

The above observations lead to the mathematical concept of a norm as a tool to evaluate vector

magnitude. Recall that a vector space is speci�ed by two sets and two operations,±=(V ,S,+, Å),

and the behavior of a norm with respect to each of these components must be de�ned. The

desired behavior includes the following properties and formal de�nition.

Unique value. The magnitude of a vector v �V should be a unique scalar, requiring the def-

inition of a function. The scalar could have irrational values and should allow ordering

of vectors by size, so the function should be from V to �, f :V��. On the real line the

point at coordinate x is at distance |x | from the origin, and to mimic this usage the norm

of v �V is denoted as �v �, leading to the de�nition of a function � �:V��

+

, �

+

={a|a��,

a �0}.



Null vector case. Provision must be made for the only distinguished element of V , the null

vector 0. It is natural to associate the null vector with the null scalar element, �0�=0. A

crucial additional property is also imposed namely that the null vector is the only vector

whose norm is zero, �v�=0Ò v =0. From knowledge of a single scalar value, an entire

vector can be determined. This property arises at key junctures in linear algebra, notably

in providing a link to mathematical analysis, and is needed to establish the fundamental

theorem of linear algbera or the singular value decomposition encountered later.

Scaling. Transfer of the scaling operation v =au property leads to imposing �v �= |a|�u �. This

property ensures commensurability of vectors, meaning that the magnitude of vector v

can be expressed as a multiple of some standard vector magnitude �u �.

Vector addition. Position vectors from the origin to coordinates x ,y >0 on the real line can

be added and |x +y |= |x |+ |y |. If however the position vectors point in di�erent directions,

x > 0, y < 0, then |x + y | < |x | + |y |. For a general vector space the analogous property is

known as the triangle inequality , �u +v�� �u �+ �v � for u ,v �V .

DEFINITION. (NORM) . A norm on the vector space±=(V ,S, +, Å) is a function � �:V��

+

that for

u ,v �V, a�S satis�es:

1. �v�=0Òv =0;

2. �au �= |a| �u �;

3. �u +v�� �u �+ �v �.

A commonly encountered norm of v ��

m

is the Euclidean norm

�v�= v

1

2

+ Å Å Å +v

m

2

(

=(v

1

2

+ Å Å Å + v

m

2

)

1/2

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

j=1

m

v

j

2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

1/2

,

useful in many physics applications. The form of the above norm, square root of sum of squares

of components, can be generalized to obtain other useful norms.

DEFINITION. (p-NORM IN �

m

) . The p-norm on the real vector space �

m

=(�

m

,�,+, Å) for p�1 is the

function � �

p

:V��

+

with values �x �

p

=(|x

1

|

p

+ |x

2

|

p

+ Å Å Å + |x

m

|

p

)

1/p

, or

�x �

p

=

(

(

(

(

(

(

(

(

(

(

y

i=1

m

|x

i

|

p

)

)

)

)

)

)

)

)

)

)

1/p

for x ��

m

. (6)

Note that the Euclidean norm corresponds to p=2, and is o�en called the 2-norm. Denote by x

i

the largest component in absolute value of x ��

m

. As p increases, |x

i

|

p

becomes dominant with

respect to all other terms in the sum suggesting the de�nition of an inf-norm by

�x�

�

=max

1�i�m

|x

i

| .

This also works for vectors with equal components, since the fact that the number of compo-

nents is �nite while p�� can be used as exempli�ed for x =[ a a . . . a ]

T

, by �x �

p

=(m |a|

p

)

1/p

=

m

1/p

|a|, with m

1/p

�1.
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Figure 1. Regions within �

2

for which �x �

p

�1, for p=1,2, 3,�.

Vector norms arise very o�en in applications, especially in data science since they can be used

to classify data, and are implemented in so�ware systems such as Julia in which the norm func-

tion with a single argument computes the most commonly encountered norm, the 2-norm. If a

second argument p is speci�ed the p-norm is computed.

4 x=[1; 1; 1]; [norm(x) sqrt(3)]

[ 1.7320508075688772 1.7320508075688772 ] (7)

4 m=9; x=ones(m,1); [norm(x) sqrt(m)]

[
3.0 3.0

] (8)

4 m=4; x=ones(m,1); [norm(x,1) m]

[
4.0 4.0

] (9)

4

2.2. Inner product

Norms are functionals that de�ne what is meant by the size of a vector, but are not linear.

Even in the simplest case of the real line, the linearity relation |x + y | = |x | + |y | is not veri�ed

for x > 0, y < 0. Nor do norms characterize the familiar geometric concept of orientation of a

vector. A particularly important orientation from Euclidean geometry is orthogonality between

two vectors. Another function is required, one that would take two vector arguments to enable

characterizing their relative orientation. It would return a scalar, hence s:V ×V�S, with S o�en

chosen as the set of real numbers.

DEFINITION. (INNER PRODUCT) . A real inner product in the vector space±=(V ,�,+, Å) is a function

s:V ×V�� with properties

Symmetry. For any a ,x �V, s(a ,x)= s(x ,a ).

Linearity in second argument. For any a ,x , y �V, ± ,² ��, s(a ,±x +²y)=±s(a ,x)+²s(a , y).

Positive de�niteness. For any x �V \{0}, s(x ,x)>0.

A commonly encountered inner product is the dot product of two vectors a ,x ��

m

a Åx =a

1

x

1

+ Å Å Å +a

m

x

m

.



Using the convention of representing a ,x as column vectors, the dot product is also expressed as

a

T

x = [ a

1

a

2

. . . a

m

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

Å

Å

Å

x

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

and is therefore a matrix multiplication between a

T

��

1×m

and x ��

m×1

resulting in a scalar, also

referred to as a scalar product. Inner products also provide a procedure to evaluate geometrical

quantities and relationships.

Vector norm. The square of the 2-norm of x ��

m

is given as

s(x ,x)=x

T

x = �x�

2

2

.

In general, the square root of s(x ,x) satis�es the properties of a norm, and is called the

norm induced by an inner product

�x �= s(x ,x)

1/2

.

A real space together with the scalar product s(x , y)= x

T

y and induced norm �x �= s(x ,

x)

1/2

de�nes an Euclidean vector space 0

m

.

Orientation. In 0

2

the point speci�ed by polar coordinates (r ,¸) has the Cartesian coordi-

nates x

1

= r cos¸ , x

2

= r sin¸ , and position vector x =[ x

1

x

2

]

T

. The inner product

e

1

T

x =[ 1 0 ] [

x

1

x

2

]=1 Åx

1

+0 Åx

2

= r cos¸ ,

is seen to contain information on the relative orientation of x with respect to e

1

. In

general, the angle ¸ between two vectors x , y with any vector space with a scalar product

can be de�ned by

cos¸ =

s(x , y)

[s(x ,x) s(y , y)]

1/2

=

s(x , y)

�x � �y �

,

which becomes

cos¸ =

x

T

y

�x � �y �

,

in a Euclidean space, x , y ��

m

.

Orthogonality. In 0

2

two vectors are orthogonal if the angle between them is such that

cos¸ =0, and this can be extended to an arbitrary vector space±=(V ,�,+, Å)with a scalar

product by stating that x , y �V are orthogonal if s(x , y)=0. In 0

m

vectors x , y ��

m

are

orthogonal if x

T

y =0.

3. Linear mapping matrices

3.1. Common geometric transformations

Several geometric transformations are linear mappings and are widely used in applications.
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Stretching. Di�erent stretch ratios along separate axis in �

m

is described by the linear map-

ping, s:�

m

��

m

,

s(x)=

[

[

[
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[
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m

]

]
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]

]
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]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

The matrix associated with stretching is

S =[
s(e

1

) s(e

2

) . . . s(e

m

)
]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

»

1

0 . . . 0

0 »

2

. . . 0

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 0 . . . »

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=diag(»

1

,»

2

, . . . ,»

m

),

and has a remarkably simple form known as a diagonal matrix .

Projection. A very important transformation is projection of a vector v ��

m

along the direction

of another vector u `0. It is convenient to de�ne a vector of unit length along the direction of u

by

q =

u

�u �

.

The resulting vector is w =p

q

(v)��

m

has the same number of components as v , and is of length

�v� cos¸ in the direction of q , stated as

w =(�v �cos¸)q .

The matrix associated with projection is

P

q

=�

p

q

(e

1

) p

q

(e

2

) . . . p

q

(e

m

)

�.

The j

th

unit vector e

j

is at angle ¸

j

with respect to q ,

cos¸

j

= q

T

e

j

= [
q

1

q

2

. . . q

m

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

Å

Å

Å

1

Å

Å

Å

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=q

j

,

and the projection of e

j

along q is

p

q

(e

j

)=(�e

j

� cos¸

j

)q =q

j

q .

Gathering projections of all the unit vectors within the identity matrix gives

P

q

=[
q

1

q q

2

q . . . q

m

q
].

Note that P

q

contains m column vectors that are all scalings of the q vector, by coe�cients q

1

,

q

2

, . . . ,q

m

that are the components of q itself. Since scaling is a linear combination, the above m

linear combinations can be expressed as a matrix-matrix product

P

q

= q [
q

1

q

2

. . . q

m

],

leading to the remarkably simple expression

P

q

= qq

T

��

m×m

.



v

w =p

q

(v)=P

q

v

e

1

e

2

z = r

q

(v)=R

q

v

u

¸ q

y

Figure 2. Projection (p

q

) and re�ection (r

q

) operations in two dimensions

Re�ection. Another widely used geometric transformation that is also a linear mapping is the

re�ection of a vector v across another vector u . As before, introduce a unit vector in the direc-

tion of u , q =u /�u �, and let z = r

q

(v)=R

q

v be the re�ection of v across q . The re�ection matrix

can be constructed from the previous projection matrix. Start from the vector addition

w =P

q

v = (qq

T

)v =v + y ,

that can be interpreted as stating that the projection w is obtained from v by addition of the

vector y . The re�ection of w across q is obtained by starting at v , and adding 2y ,

z =v +2(w �v)=2w �v =2(qq

T

)v �v =2(qq

T

)v � Iv = [2(qq

T

)�I ]v =R

q

v .

The re�ection matrix results

R

q

=2(qq

T

)�I .

Rotation in �

2

. The previous geometric transformations are valid in �

m

for arbitrary m. Rota-

tion mappings are not as readily generalizable. In two dimensions, consider r

¸

(v)=R

¸

v , with

R

¸

=[ r

¸

(e

1

) r

¸

(e

2

) ]=

[

[

[

[

[

[

cos¸ �sin¸

sin¸ cos¸

]

]

]

]

]

]

¸

¸

e

2

r

¸

(e

1

)

cos¸

e

1

sin¸

Figure 3. Rotation r

¸

(v )=R

¸

v in two dimensions.
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Rotation in �

3

. The axis of the above two dimensinal rotation is a third direction perpendicular

to the x

1

x

2

-plane. A vector v ��

3

would not change its third coordinate under such a transfor-

mation r

¸ ,3

(v) hence the associated rotation matrix is readily obtained as

R

¸

=[
r

¸ ,3

(e

1

) r

¸ ,3

(e

2

) r

¸ ,3

(e

3

)
]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

cos¸ �sin¸ 0

sin¸ cos¸ 0

0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

3.2. Matrix-matrix product

From two functions f :A�B and g:B�C, a composite function, h=g � f , h:A�C is de�ned by

h(x)=g( f (x)).

Consider linear mappings between Euclidean spaces f :�

n

��

m

, g :�

m

��

p

. Recall that linear

mappings are expressed as matrix vector multiplications

f (x)=Ax , g(y)=By ,A ��

m×n

,B ��

p×m

.

The composite function h = g � f is h :�

n

��

p

, de�ned by

h(x)= g(f (x))= g(Ax)=BAx .

Note that the intemediate vector u =Ax is subsequently multiplied by the matrix B . The com-

posite function h is itself a linear mapping

h(ax +by)=BA(ax +by)=B (aAx +bAy)=aBAx +bBAy =ah(x)+bh(y),

so it also can be expressed a matrix-vector multiplication

h(x)=Cx =BAx . (10)

Using the above, C is de�ned as the product of matrix B with matrix A

C =BA .

The columns of C can be determined from those of A by considering the action of h on the the

column vectors of the identity matrix I =[ e

1

e

2

. . . e

n

]��

n×n

. First, note that

Ae

j

=[ a

1

a

2

. . . a

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

0

Å

Å

Å

Å

Å

Å

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=a

1

,...,Ae

j

=[ a

1

a

2

. . . a

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

Å

Å

Å

1

Å

Å

Å

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=a

j

,Ae

n

=[ a

1

a

2

. . . a

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

Å

Å

Å

Å

Å

Å

0

1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=a

n

. (11)

The above can be repeated for the matrix C = [ c

1

c

2

. . . c

n

] giving

h(e

1

)=Ce

1

= c

1

, . . . ,h(e

j

)=Ce

j

= c

j

, . . . ,h(e

n

)=Ce

n

= c

n

. (12)

Combining the above equations leads to c

j

=Ba

j

, or

C =[
c

1

c

2

. . . c

n

]=B [
a

1

a

2

. . . a

n

].



From the above the matrix-matrix product C = BA is seen to simply be a grouping of all the

products of B with the column vectors of A,

C = [
c

1

c

2

. . . c

n

]=[B
a

1

Ba

2

. . . Ba

n

]

The above results can readily be veri�ed computationally.

4 a1=[1; 2]; a2=[3; 4]; A=[a1 a2]

[

[

[

[

[

[

1 3

2 4

]

]

]

]

]

]

(13)

4 b1=[-1; 1; 3]; b2=[2; -2; 3]; B=[b1 b2]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�1 2

1 �2

3 3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(14)

4 C=B*A

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

3 5

�3 �5

9 21

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(15)

4 c1=B*a1; c2=B*a2; [c1 c2]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

3 5

�3 �5

9 21

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(16)

4

3.3. Properties of the matrix-matrix product

Matrix-matrix products have been seen to arise from composition of linear mappings, and their

properties arise from such compositions. Whereas matrix addition is direct consequence of com-

ponent-by-component operations, matrix products exhibit some particularities.

Non-commutativity. Consider g(v)=Bv to be rotation of vectors in �

2

by angle ¸ =À /4,

and f (v)=Av to be re�ection across the e

1

direction. The associated matrices are

A =

[

[

[

[

[

[

1 0

0 �1

]

]

]

]

]

]

,B =

1

2
(

[

[

[

[

[

[

1 �1

1 1

]

]

]

]

]

]

.

Rotation followed by re�ection of the vector e

1

is

(f � g)(e

1

)= f (g(e

1

))=ABe

1

=

1

2
(

[

[

[

[

[

[

1

�1

]

]

]

]

]

]

,

whereas re�ection followed by rotation is

(g � f )(e

1

)= g(f (e

1

))=BAe

1

=

1

2
(

[

[

[

[

[

[

1

1

]

]

]

]

]

]

,
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a di�erent result, highlighting that the order of applying linear transformations is impor-

tant. Indeed, from

AB =

[

[

[

[

[

[

1 0

0 �1

]

]

]

]

]

]

1

2
(

[

[

[

[

[

[

1 �1

1 1

]

]

]

]

]

]

=

1

2
(

[

[

[

[

[

[

1 �1

�1 �1

]

]

]

]

]

]

,BA =

1

2
(

[

[

[

[

[

[

1 �1

1 1

]

]

]

]

]

]

[

[

[

[

[

[

1 0

0 �1

]

]

]

]

]

]

=

1

2
(

[

[

[

[

[

[

1 1

1 �1

]

]

]

]

]

]

,

it is seen that AB `BA, and in general matrix multiplication is not commutative.

Associativity. Consider now three linear mappings f (x) =Ax , g(x) =Bx , h(x) =Cx , and

compare the results of (f � g) �h to f � (g �h)

((f � g) �h)(x)=(f � g)(h(x))= (AB )(Cx)

(f � (g �h))(x)= f ((g �h)(x))=A(BCx).

Since (f � g)(h(x))= f (g(h(x)))= (f � (g �h))(x), it results that the above two expres-

sions should also be equal for arbitrary x ,

(AB )C =A(BC ),

and matrix multiplication is said to be associative.

Product transposition. The transpose of a linear combination is a straightforward reorga-

nization of vector components as rows instead of columns,

(Ax)

T

=(x

1

a

1

+ Å Å Å +x

n

a

n

)

T

=x

1

a

1

T

+ Å Å Å +x

n

a

n

T

.

The above can be expressed as a matrix multiplication

(Ax)

T

= [ x

1

x

2

. . . x

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

T

a

2

T

Å

Å

Å

a

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=x

T

A

T

.

Extending the above to multiple linear combinations gives

(AX )

T

=��

Ax

1

Ax

2

. . . Ax

p

��

T

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(Ax

1

)

T

(Ax

2

)

T

Å

Å

Å

(Ax

p

)

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

T

A

T

x

2

T

A

T

Å

Å

Å

x

p

T

A

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

T

x

2

T

Å

Å

Å

x

p

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

A

T

=X

T

A

T

,

the transpose of a product is the product of the transposes.

3.4. Block matrix operations

In expression such as

A

T

=( [
a

1

a

2

. . . a

n

])

T

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

T

a

2

T

Å

Å

Å

a

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,



the column vectors a

1

, a

2

, . . . , a

n

can be interpreted as blocks of size m×1 within the matrix A of

size m×n. A pervasive task within linear algebra application to large data sets is to break down

the problem into smaller parts. Consider that matrixM of sizem×n can be broken up into blocks

M =

[

[

[

[

[

[

U V

X Y

]

]

]

]

]

]

.

The dimensions of the blocks have to be compatible, and if U has size p×q and Y has size r × s,

it must hold that

m=p+ r ,n =q + s,

and matrix X has size r ×q, V has size p× s.

Block transposition. The transpose of M is

M

T

=

[

[

[

[

[

[

[

[

U

T

X

T

V

T

Y

T

]

]

]

]

]

]

]

]

.

Block addition. Assuming compatibility of block dimensions, addition is carried out block-

by-block.

M +N =

[

[

[

[

[

[

U V

X Y

]

]

]

]

]

]

+

[

[

[

[

[

[

P Q

R S

]

]

]

]

]

]

=

[

[

[

[

[

[

U +P V +Q

X +R Y +S

]

]

]

]

]

]

.

Block multiplication. The �rows-over-columns� rule carries over to blocks

MN =

[

[

[

[

[

[

U V

X Y

]

]

]

]

]

]

[

[

[

[

[

[

P Q

R S

]

]

]

]

]

]

=

[

[

[

[

[

[

UP +VR UQ +VS

XP +YR XQ +YS

]

]

]

]

]

]

,

where non-commutativity of matrix multiplication has to be respected.
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