
MATRIX VECTOR SUBSPACES

SYNOPSIS. Operations with vectors have been formally de�ned by the vector space algebraic

structure, and the idea of obtaining new vectors by linear combination has been concisely stated

as matrix-vector multiplication. Matrices also describe mappings between vector spaces that

preserve linear combinations. Can all vectors of interest be obtained by linear combination of

some set of vectors? This is a natural question to ask, and is answered through the concept of

vector subspaces associated with a matrix.

1. Vector subspaces

1.1. Vectors reachable by linear combination

A central interest in data science is to seek simple description of complex objects. A typical

situation is that many instances of some object of interest are initially given as anm-tuple b ��

m

with large m. Assuming that addition and scaling of such objects can be cogently de�ned, a

vector space is obtained, say over the �eld of reals with an Euclidean distance, E

m

. Examples

include for instance recordings of medical data (electroencephalograms, electrocardiograms),

sound recordings, or images, for which m can easily reach in to the millions. A natural question

to ask is whether all the m real numbers are actually needed to describe the observed objects.

Perhaps instead of specifying all the components of b ��

m

, it might be possible to state that v

is a linear combination of n <m vectors
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It is then natural to formally de�ne the set of all vectors b that could thus be expressed, meaning

that they can be reached by linear combination of the columns of A.

DEFINITION. In vector space ±= (V ,S, +, Å), the span of vectors a

1

,a

2

, . . . , a

n

�V , is the set of vectors

reachable by linear combination

span{a

1

,a

2

, . . . ,a

n

}={b �V | �x

1

, . . . ,x

n

�S such that b =x

1

a

1

+ . . . +x

n

a

n

}.

What now is the relationship between this set of reachable vectors and the entire vector space?

The mathematical transcription of this question leads to a consideration of another algebraic

structure.

DEFINITION. ° = (U , S, +, Å), U `�, is a vector subspace of vector space ± = (V , S, +, Å) over the

same �eld of scalars S, denoted by °d±, if U

�

�

V and �a,b �S, �u ,v �U, the linear combination

au +bv �U.

The above states a vector subspace must be closed under linear combination, and have the same

vector addition and scaling operations as the enclosing vector space. The simplest vector sub-

space of a vector space is the null subspace that only contains the null element, U ={0}. In fact,

any subspace must contain the null element 0, or otherwise closure would not be veri�ed for

the particular linear combination u + (�u)=0. One can think ofµ= ({0},S, +, Å) as the smallest

subspace of a vector space. By the above de�nition,° is also a subspace of itself, intuitively, the

largest subspace. If U �V , then ° is said to be a proper subspace of±, denoted by °<±.
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Setting n�m components equal to zero in the real space�

m

defines a proper subspace whose ele-

ments can be placed into a one-to-one correspondence with the vectors within �

n

. For example,

setting component m of x ��

m

equal to zero gives x = [
x

1

x

2

. . . x

m�1

0
]

T

that, while not a

member of �

m�1

, is in a one-to-one relation with x

¹

= [ x

1

x

2

. . . x

m�1

]

T

��

m�1

. Dropping the

last component of y ��

m

, y = [
y

1

y

2

. . . y

m�1

y

m

]

T

gives vector y

¹

= [
y

1

y

2

. . . y

m�1

] ��

m�1

,

but this is no longer a one-to-one correspondence since for some given y

¹

, the last component

y

m

could take any value.

4 m=3; x=[1; 2; 0]; xp=x[1:2]
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(1)

4 y=[1; 2; 3]; yp=y[1:2]

[
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(2)

4 [xp==yp x==y]

[ t ru e fa l s e ] (3)

4

1.2. Vector space composition

Vector subspaces arise from the decomposition of a vector space, the idea of breaking up a

complex object into component parts. The converse, composition of vector spaces°=(U ,S,+, Å)

±=(V ,S, +, Å) is also de�ned in terms of linear combination. A vector x ��

3

can be obtained as

the linear combination
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but also as
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for some arbitrary a ��. In the �rst case, x is obtained as a unique linear combination of a

vector from the set U =�¡

x

1

0 0

¢

T

|x

1

��  with a vector from V ={[
0 x

2

x

3

]

T

|x

2

,x

3

��}. In the

second case, there is an in�nity of linear combinations of a vector from V with another from

W =�
¡

x

1

x

2

0

¢

T

|x

1

,x

2

��  to the vector x . This is captured by a pair of de�nitions to describe

the two types of vector space composition.



DEFINITION. Given two vector subspaces °=(U ,S, +, Å),±=(V ,S,+, Å) of the space²=(W ,S, +, Å),

the direct sum is the vector space °�±= (U �V , S, +, Å), where the direct sum of the two sets of

vectors U ,V is U �V ={u +v : �!u �U , �!v �V }. (unique decomposition)

DEFINITION. Given two vector subspaces °=(U ,S, +, Å),±=(V ,S,+, Å) of the space²=(W ,S, +, Å),

the sum is the vector space °+±= (U +V ,S, +, Å), where the sum of the two sets of vectors U ,V is

U +V = {u +v :u �U ,v �V }.

Since the same scalar �eld, vector addition, and scaling is used, it is convenient to refer to vector

space sums simply by the sum of the vector sets U +V , or U �V , instead of specifying the full 4-

tuplet for each space. This shall be adopted henceforth to simplify the notation.

4 u=[1; 0; 0]; v=[0; 2; 3]; vp=[0; 1; 3]; w=[1; 1; 0]; [u+v vp+w]
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(4)

4

In the above computational example, the essential di�erence between the two ways to express

x ��

3

is that U )V = {0}, but V )W = {[ 0 a 0 ]

T

: a ��}` {0}, and in general if the zero vector

is the only common element of two vector spaces then the sum of the vector spaces becomes a

direct sum. In general, the common elements of two vector subspaces can also be de�ned.

DEFINITION. Given two vector subspaces (U ,S,+, Å), (V ,S, +, Å) of the space (W ,S,+, Å), the intersec-

tion is the set U )V = {x |:x �U ,x �V }.

In practice, the most important procedure to construct direct sums or to check when an inter-

section of two vector subspaces reduces to the zero vector is through an inner product.

DEFINITION. Two vector subspaces U ,V of the real vector space �

m

are orthogonal, denoted as U¥V

if u

T

v =0 for any u �U ,v �V.

DEFINITION. Two vector subspaces U,V of U +V are orthogonal complements, denoted U =V

¥

, V =

U

¥

if they are orthogonal subspaces, U¥V, and U )V ={0}, i.e., the null vector is the only common

element of both subspaces.

Continuing the above computational example where the same vector was obtained through two

di�erent linear combinations, z = u + v = v

¹

+w , the essential di�erence between the two is u is

orthogonal to v , whereas v

¹

is not orthogonal to w .

4 [u'*v vp'*w]

[
0 1

] (5)

4
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2. Vector subspaces of a linear mapping

2.1. Matrix column and le� null spaces

The wide-ranging utility of linear algebra essentially results a complete characterization of the

behavior of a linear mapping between vector spaces f :U�V , f (au +bv)=af (u)+bf (v). For

some given linear mapping the questions that arise are:

1. Can any vector within V be obtained by evaluation of f ?

2. Is there a single way that a vector within V can be obtained by evaluation of f ?

Linear mappings between real vector spaces f :�

n

��

m

, have been seen to be completely spec-

i�ed by a matrix A ��

m×n

. It is common to frame the above questions about the behavior of the

linear mapping f (x)=Ax through sets associated with the matrix A. To frame an answer to the

�rst question, a set of reachable vectors is �rst de�ned.

DEFINITION. The column space (or range) of matrix A ��

m×n

is the set of vectors reachable by linear

combination of the matrix column vectors

C(A)=range(A)= {b ��

m

: �x ��

n

such thatb =Ax}.

By de�nition, the column space is included in the co-domain of the function f (x)=Ax , C(A)

�

�

�

m

, and is readily seen to be a vector subspace of �

m

. Having de�ned the set of vectors reachable

by linear combination, two questions arise:

1. Is the column space the entire co-domain, C(A)=�

m

? This would signify that any vector

can be reached by linear combination of columns of A.

2. What co-domain vectors are not reachable by linear combination of columns of A ?

Consider the orthogonal complement of C(A) de�ned as the set vectors y orthogonal to all of

the column vectors of A = [ a

1

a

2

. . . a

n

], expressed through inner products as

a

1

T

y =0,a

2

T

y =0, . . . ,a

n

T

y =0.

This can be expressed more concisely through the transpose operation
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and leads to the de�nition of a set of vectors for which A

T

y =0

DEFINITION. The le� null space (or cokernel) of a matrix A ��

m×n

is the set

N(A

T

)=null(A

T

)={y ��

m

:A

T

y =0}.

Note that the le� null space is also a vector subspace of the co-domain of f (x)=Ax , N(A

T

)

�

�

�

m

.

The above de�nitions suggest that both thematrix and its transpose play a role in characterizing

the behavior of the linear mapping f =Ax , so analagous sets are de�ne for the transpose A

T

.



DEFINITION. The row space (or corange) of a matrix A ��

m×n

is the set

R(A)=C(A

T

)=range(A

T

)={c ��

n

: �y ��

m

c =A

T

y}

�

�

�

n

DEFINITION. The null space of a matrix A ��

m×n

is the set

N(A)=null(A)= {x ��

n

:Ax =0}

�

�

�

n

2.2. Geometric description of subspaces

The concepts of Euclidean geometry are widely used to characterize subspaces of a vector space.

Consider the familiar example of 0

2

=(�

2

,�, +, Å) the Euclidean 2-space or plane,
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.

As is common the vector space representing the plane is referred to either by its full name 0

2

or

in shorthand form as �

2

. The trivial subspaces of �

2

are the zero vector spaceµ= ({0},�, +, Å),

and �

2

itself. Any line passing through the origin is a non-trivial subspace �=(L,�, +, Å) with
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In particular the x

1
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2

axes are
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respectively. In �

3

, the non-trivial subspaces are lines passing through the origin
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and planes passing through the origin
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,

where n is the normal vector of the plane. An intuitive understanding of subspace geometry is

essential and built up from instructive computational examples.

Examples. Consider a linear mapping between real spaces f :�

n

��

m

, de�ned by y = f (x) =

Ax =[ y

1

. . . y

n

]

T

, with A ��

m×n

. Julia provides the nullspace function to return a set of vectors

that span a null space. A function colspace to provide a set of vectors to span the column space

is not yet in the general libraries, but can be readily de�ned, together with a function to display

numerical results to a default precision of p=6 digits.

4 function colspace(A,p=6)

return round.(Matrix(qr(A).Q)[:,1:rank(A)],digits=p)

end;
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4 short(x) = round(x,digits=6);

4 short(pi)

3.141593

4

With these functions de�ned, the following examples provide great insight into the signi�cance

of column and null spaces and their associated spanning sets. For these small-dimensional,

simple examples geometric insight is su�cient to understand what column and null spaces rep-

resent. Computational procedures can be devised for much higher number of components, and

the geometric insights gained here carry over.

1. For m=3,n =1,

A =

[

[

[

[

[

[

[

[

[

[

[

[
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[
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]

]

]

]

]

]

]

]

]

]

]

]

]

]

]
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]

]

,A

T

= [
1 0 0

],

the column space C(A) is the y

1

-axis, and the le� null space N(A

T

) is the y

2

y

3

-plane

since the condition A

T

y =0 reduces to y

1

= 0. Spanning vector sets for C(A) and N(A

T

)

can be computed as follows, con�rming the previous geometric descriptions. Note that

combining the two leads to the identity matrix, an observation whose signi�cance will

soon become apparent.

4 A=[1; 0; 0]; colspace(A)
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]

(6)

4 nullspace(A')

[
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]

(7)

4 [colspace(A) nullspace(A')]

[
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]

(8)

4

2. For m=3,n =2,

A =

[
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]

]

]

= [ a

1

a

2

], A

T

=

[

[

[

[

[

[

1 0 0

�1 0 0

]

]

]

]

]

]

,

the columns of A are colinear, a

2

=�a

1

, and the column space C(A) is the y

1

-axis, and the

le� null space N(A

T

) is the y

2

y

3

-plane, as before.



4 A=[1 -1; 0 0; 0 0]; CA=colspace(A)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1.0

0.0

0.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(9)

4 NAt=short.(nullspace(A'))

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0.0 0.0

1.0 0.0

0.0 1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(10)

4 [CA NAt]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(11)

4

3. For m=3,n =2,

A =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0

0 1

0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, A

T

=

[

[

[

[

[

[

1 0 0

0 1 0

]

]

]

]

]

]

,

the column space C(A) is the y

1

y

2

-plane, and the le� null space N(A

T

) is the y

3

-axis.

4 A=[1 0; 0 1; 0 0]; CA=colspace(A)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1.0 0.0

0.0 1.0

0.0 0.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(12)

4 NAt=short.(nullspace(A'))

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0.0

0.0

1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(13)

4 [CA NAt]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(14)

4

4. For m=3,n =2,

A =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1

1 �1

0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, A

T

=

[

[

[

[

[

[

1 1 0

1 �1 0

]

]

]

]

]

]

,
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the same C(A), N(A

T

) are obtained, albeit with a different set of spanning vectors

returned by colspace.

4 A=[1 1; 1 -1; 0 0]; CA=colspace(A)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�0.707107 �0.707107

�0.707107 0.707107

0.0 0.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(15)

4 NAt=short.(nullspace(A'))

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0.0

0.0

1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(16)

4 [CA NAt]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�0.707107 �0.707107 0.0

�0.707107 0.707107 0.0

0.0 0.0 1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(17)

4

5. For m=3,n =3,

A =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1 3

1 �1 �1

1 1 3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=[
a

1

a

2

a

3

],

A

T

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1 1

1 �1 1

3 �1 3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

T

a

2

T

a

3

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,A

T

y =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

T

y

a

2

T

y

a

3

T

y

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

Since a

3

= a

1

+2a

2

, the orthogonality condition A

T

y =0 is satis�ed by vectors of form y =

[
a 0 �a

], �a��.

4 A=[1 1 3; 1 -1 -1; 1 1 3]; CA=colspace(A)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�0.5773502691896257 0.40824829046386313

�0.5773502691896257 �0.816496580927726

�0.5773502691896257 0.40824829046386313

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(18)

4 NAt=short.(nullspace(A'))

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�0.707107

0.0

0.707107

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(19)

4 [CA NAt]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�0.5773502691896257 0.40824829046386313 �0.707107

�0.5773502691896257 �0.816496580927726 0.0

�0.5773502691896257 0.40824829046386313 0.707107

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(20)
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