
VECTOR SPACE DIMENSION

SYNOPSIS. The vector subspaces of a matrix characterize what vectors can or cannot be reached

by linear combination of matrix columns or rows. How large are these subspaces? An answer is

provided by the concept of minimal spanning sets, and the number of vectors in a minimal span-

ning set allows a precise de�nition of the intuitive concept of dimension. Upon completion of

the framework for vector operations, a �rst example of the relevance of the theory is considered

in the problem of classi�cation of electrocardiograms as indicators of healthy or diseased states.

1. Linear dependence and independence

1.1. Zero factors

For the simple scalar mapping f :���, f (x) = ax , the condition f (x)= 0 implies either that

a = 0 or x = 0. The function f is a linear mapping, and a = 0 can be understood as de�ning a

zero mapping f (x) = 0. When a ` 0 the condition ax = 0 necessarily implies that x = 0. Scalar

multiplication satis�es the zero product property and if a product is equal to zero one of the

factors must be zero.

Linear mappings between vector spaces, f :�

n

��

m

, f (x)=Ax , A ��

m×n

can exhibit remarkably

di�erent behavior. As in the scalar case, a zero mapping is de�ned by A =0 in which case f (x)=

0. In contrast to the scalar case, even when A ` 0, the equation Ax = 0 no longer necessarily

implies that x =0. For example,

A =[
a

1

a

2

]=

[

[

[

[

[

[

1 1

2 2

]

]

]

]

]

]

,Ax =

[

[

[

[

[

[

1 1

2 2

]

]

]

]

]

]

[

[

[

[

[

[

1

�1

]

]

]

]

]

]

=

[

[

[

[

[

[

0

0

]

]

]

]

]

]

=0. (1)

The linear combination above can be read as traveling x

1

=1 in the direction of a

1

, followed by

traveling x

2

=�1 in the direction of a

2

. Since a

1

= a

2

, the net result of the travel is arrival at the

origin Ax =0. Though A has two column vectors, they both specify the same direction and are

said to contain redundant data. A similar situation arises for

B = [
b

1

b

2

b

3

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 �1 1

2 0 4

3 1 7

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,Bx =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 �1 1

2 0 4

3 1 7

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

2

1

�1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

0

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=0. (2)

The columns of B specify three di�erent directions, but the directions satisfy b

3

=2b

1

+b

2

. This

implies that b

3

� span{b

1

,b

2

}. Whereas the vectors a

1

, a

2

are colinear in �

2

, the vectors b

1

, b

2

, b

3

are coplanar within �

3

. In both cases matrix vector multiplication is seen to not satisfy the zero

product property and from Ax =0 one cannot deduce that either A =0 or x =0. This arises from

the de�ning matrix-vector multiplication to describe linear combinations.

There are however cases whenMx =0 implies that x =0, most simply for the caseM = I . The need

to distinguish between cases that satisfy or do not satisfy the zero product property leads to a

general concept of linear dependence.

DEFINITION. The vectors a

1

,a

2

, . . . ,a

n

�V ,are linearly dependent if there exist n scalars, x

1

, . . . ,x

n

�S,

at least one of which is di�erent from zero such that

x

1

a

1

+ . . . +x

n

a

n

=0.
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Introducing a matrix representation of the vectors

A = [
a

1

a

2

. . . a

n

];x =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

Å

Å

Å

x

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

allows restating linear dependence as the existence of a non-zero vector, �x `0, such that Ax =0.

Linear dependence can also be written as Ax =0Ï x = 0, or that one cannot deduce from the

fact that the linear mapping f (x) = Ax attains a zero value that the argument itself is zero.

The converse of this statement would be that the only way to ensure Ax = 0 is for x = 0, or

Ax =0Òx =0, leading to the concept of linear independence.

DEFINITION. The vectors a

1

,a

2

, . . . ,a

n

�V ,are linearly independent if the only n scalars, x

1

, . . . ,x

n

�S,

that satisfy

x

1

a

1

+ . . . +x

n

a

n

=0, (3)

are x

1

=0, x

2

=0,...,x

n

=0.

If A ��

m×n

contains n linearly independent vectors a

1

,...,a

n

��

m

the nullspace of A only contains

one element, the zero vector.

N(A)={x :Ax =0}={0}Ô a

1

, . . . ,a

n

linearly independent.

1.2. Orthogonality

Establishing linear independence through the above de�nition requires algebraic calculations

to deduce that x

1

a

1

+ . . . +x

n

a

n

=0 necessarily implies x

1

=0, x

2

=0,...,x

n

=0. There is an important

case suggested by the behavior of the column vectors of the identity matrix I that simpli�es the

calculations. Distinct column vectors e

1

, . . . , e

m

within I are orthogonal

e

i

T

e

j

=0, 1� i , j �m, i ` j

and each individual vector is of unit 2-norm

e

i

T

e

i

=1, 1� i �m.

In this case multiplying the equation x

1

e

1

+ ... +x

m

e

m

=0 by e

j

T

immediately leads to x

j

=0, and the

column vectors of I are linearly independent. In general any orthogonal set of vectors u

1

, . . . ,u

n

are linearly independent by the same argument. In matrix terms, the vectors are collected into

a matrix U = [ u

1

u

2

. . . u

n

] and

U

T

U =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

T

u

2

T

Å

Å

Å

u

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[ u

1

u

2

. . . u

n

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

T

u

1

u

1

T

u

2

. . . u

1

T

u

n

u

2

T

u

1

u

2

T

u

2

. . . u

2

T

u

n

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

u

n

T

u

1

u

n

T

u

2

. . . u

n

T

u

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�u

1

�

2

0 . . . 0

0 �u

n

�

2

. . . 0

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 0 . . . �u

n

�

2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

DEFINITION. The column vectors u

1

,u

2

, . . . ,u

n

��

m

of matrix U ��

m×n

are orthogonal if

U

T

U =diag(�u

1

�

2

, . . . , �u

n

�

2

).

An especially simple and useful case is when the norms of all orthogonal vectors are equal to

one.



DEFINITION. The column vectors q

1

, q

2

, . . . , q

n

��

m

of matrix Q ��

m×n

are orthonormal if

Q

T

Q = I .

Somewhat confusingly a square matrix with orthonormal columns is said to be orthogonal.

DEFINITION. The matrix Q ��

m×m

is orthogonal if

Q

T

Q =QQ

T

= I .

Example. The rotation matrix in �

2

is orthogonal,

R

¸

=

[

[

[

[

[

[

cos¸ �sin¸

sin¸ cos¸

]

]

]

]

]

]

,R

¸

R

¸

T

=R

¸

T

R

¸

=

[

[

[

[

[

[

[

[

cos

2

¸ +sin

2

¸ 0

0 cos

2

¸ +sin

2

¸

]

]

]

]

]

]

]

]

= I .

Example. A rotation matrix in �

3

is orthogonal,

R

¸

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

cos¸ �sin¸ 0

sin¸ cos¸ 0

0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,R

¸

R

¸

T

=R

¸

T

R

¸

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

cos

2

¸ +sin

2

¸ 0 0

0 cos

2

¸ +sin

2

¸ 0

0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= I .

Example. The re�ection matrix across direction q of unit norm in �

m

R

q

=2qq

T

� I ,

is orthogonal

R

q

R

q

T

= (2qq

T

� I )(2qq

T

� I )

T

=(2qq

T

� I )(2qq

T

� I )=4qq

T

qq

T

�4qq

T

� I = I

since qq

T

qq

T

= q (q

T

q) q

T

= q (1) q

T

= qq

T

.

2. Basis and dimension

2.1. Minimal spanning sets

Vector spaces are closed under linear combination, and the span of a vector set ,= {a

1

, a

2

, . . . }

de�nes a vector subspace. If the entire set of vectors can be obtained by a spanning set, V =

span,, extending , by an additional element � =,*{b} would be redundant since span, =

span�. Avoinding redundancy leads to a consideration of a minimal spanning set. This is for-

malized by the concept of a basis, and also allows leads to a characterization of the size of a

vector space by the cardinality of a basis set.

DEFINITION. A set of vectors u

1

, . . . ,u

n

�U is a basis for vector space °=(U ,S, +, Å) if

1. u

1

, . . . ,u

n

are linearly independent;

2. span{u

1

, . . . ,u

n

}=U.

DEFINITION. The number n of vectors u

1

, .. .,u

n

�U within a basis is the dimension of the vector space

°=(U ,S, +, Å).

The above definitions underlie statements such as ��

3

represents three-dimensional space�.

Since any v ��

3

can be expressed as

v = Iv = v

1

e

1

+ v

2

e

2

+v

3

e

3

,
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it results that {e

1

,e

2

,e

3

} is a spanning set. The equation x

1

e

1

+x

2

e

2

+x

3

e

3

=0 leads to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

x

3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

0

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=0,

hence {e

1

,e

2

,e

3

} are independent, and therefore form a basis. The cardinality of the set {e

1

,e

2

,e

3

}

is equal to three, and, indeed, �

3

represents three-dimensional space.

2.2. Dimensions of matrix spaces

The domain�

n

and co-domain�

m

of the linear mapping f :�

n

��

m

, f (x)=Ax , are vector spaces.

Within these vector spaces, subspaces associated with the linear mapping are de�ned by:

" C(A) the column space of A, C(A)d�

m

" C(A

T

) the row space of A, C(A

T

)d�

n

" N(A) the null space of A, N(A)d�

n

" N(A

T

) the le� null space of A, or null space of A

T

, N(A

T

)d�

m

.

The dimensions of these subspaces arise so o�en in applications to warrant formal de�nition.

DEFINITION. The rank of a matrix A ��

m×n

is the dimension of its column space.

DEFINITION. The nullity of a matrix A ��

m×n

is the dimension of its null space.

The dimension of the row space is equal to that of the column space. This is a simple con-

sequence of how scalars are organized into vectors. When the preferred organization is into

column vectors, a linear combination is expressed as

b =Ax =x

1

a

1

+ Å Å Å +x

n

a

n

.

The same linear combination can also be expressed through rows by taking the transpose, an

operation that swaps rows and columns,

b

T

=(Ax)

T

=x

T

A

T

=x

1

a

1

T

+ Å Å Å +x

n

a

n

T

.

Any statment about the linear combination of column vectors x

1

a

1

+ Å Å Å +x

n

a

n

also holds for the

linear combination of row vectors x

1

a

1

T

+ Å Å Å + x

n

a

n

T

. In particular the dimension of the column

space equals that of the row space.

3. Signal compression

3.1. Electrocardiograms

The �rst forays of the signi�cance of matrix-associated subspaces through geometry of lines or

planes is useful, but belie the utility of these concepts in applications. Consider the problem of

long-term care for cardiac patients. Electrocardiograms (ECGs) are recorded periodically, o�en

over decades and need to be stored for comparison and assessment of disease progression. Heart-

beats arise from electrical signals occuring at frequencies of around f =250 Hz (cycles/second).

A �single-lead� ECG to detect heart arrhythmia can require T =180 s recording time, so a vector

representation would require m= fT =4.5×10

4

Eª(10

5

) components, b ��

m

,

b = Ib =b

1

e

1

+b

2

e

2

+ Å Å Å +b

m

e

m

, (4)



where component b

j

is the voltage recorded at time t

j

= j (´t), and ´t =1/ f is the sampling time

interval.

The linear combination (4) seems a natural way to organize recorded data, but is it the most

insightful? Recall the inclined plane example in which forces seemed to be naturally described

in a Cartesian system consisting of the horizontal and vertical directions, yet a more insightful

description was seen to correspond to normal and tangential directions. Might there be an alter-

native linear combination, say

b =x

1

h

1

+x

2

h

2

+ Å Å Å +x

m

h

m

, (5)

that would represent the ECG in a more meaningful manner? The vectors entering into the

linear combination are, as usual, organized into a matrix

H = [ h

1

h

2

. . . h

m

]��

m×m

,

such that the ECG is obtained through a matrix-vector product b =Hx , x ��

m

. In particular,

in this alternative description, could a smaller number of components su�ce for capturing the

essence of the ECG? Select the �rst n components by de�ning

H

n

= [
h

1

h

2

. . . h

n

]��

m×n

, c =H

n

y , c ��

m

, y ��

n

. (6)

The two-norm of the vectors' di�erence is the error µ = �b � c�

2

incurred by keeping only n com-

ponents. If c is close to b then µ should be small, and if n is much smaller than m, a compressed

version of the ECG is obtained.

At �rst sight, the representations (5,6) might seem more costly than (4) since not only do the

scaling factors x ��

m

or y ��

n

have to be stored, but also the m

2

components of H also. This

difficulty is eliminated if H = [
h

1

h

2

. . . h

m

] is obtained by some simple rule, much as I =

[
e

1

e

2

. . . e

m

] can be speci�ed by any one of a number of procedures.

3.2. The identity matrix revisited

Within the algebraic structure of a vector space there is an identity element 1�� with respect

to the operation of scaling the vector b ��

m

,

1 Åb =b .

Analogously, the identity matrix I ��

m×m

acts as an identity element with respect to matrix

vector multiplication

Ib =b .

Since matrix-matrix multiplication is simply successive matrix-vector multiplications,

AB =A�

b

1

b

2

. . . b

p

�= �

Ab

1

Ab

2

. . . Ab

p

�

the identity matrix I is an identity element for matrix multiplication

IB =B .

VECTOR SPACE DIMENSION 5



Computer storage of the identity matrix I ��

m×m

might naively seem to require m

2

locations,

one for every component, but its remarkable structure implies speci�cation only of a single

number, m the size of I . The identity matrix can then be reconstructed as needed through a

variety of procedures.

Prede�ned identity operator. In Julia I is a prede�ned operator from which the full iden-

tity matrix can be reconstructed if needed

4 m=3; Matrix(1.0I,m,m)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(7)

Component de�nition. In terms of components

I =[´

ij

], 1� i , j �m,´

ij

=

{

{

{

{

{

{

{

{

{

{

{

{

1 if i = j

0 otherwise

,

where ´

ij

is known as Kronecker-delta and is readily transcribed in Julia.

4 ´(i,j) = if i==j return 1 else return 0 end;

4 Id(m) = [´(i,j) for i in 1:m, j=1:m]; Id(3)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0

0 1 0

0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(8)

4

Column vector de�nition. Another construction is by circular shi�s of the column vector

e

1

=[ 1 0 . . . 0 ]

T

��

m

.

4 e1T(m) = [1; zeros(m-1,1)]; e1T(3)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1.0

0.0

0.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(9)

4 ekT(m,k) = circshift(e1T(m),k); [ekT(3,0) ekT(3,1) ekT(3,2)]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(10)

Diagonal matrix construction. The diagonal structure of I also de�nes a reconstruction.

4 Diagonal(ones(3,3))

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(11)
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3.3. Exterior product construction of I

A conceptually di�erent reconstruction of I whenm=2

p

uses block matrix operations and builds

up larger matrices from smaller ones. This technique is quite instructive in that it:

� introduces the concept of an outer product that can be compared to inner products;

� introduces the concept of recursive de�nition.

Since larger versions of the identity matrix will be obtained from smaller ones, a notation to

specify the matrix size is needed. Let I

k

denote the identity matrix of sizem×mwithm=2

k

. Start

from p=0, m=1 in which case I

0

=[1], also de�ne

I

1

=

[

[

[

[

[

[

1 0

0 1

]

]

]

]

]

]

.

The next matrix in this sequence would be I

2

in which a block structure can be identi�ed

I

2

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

I

1

0

0 I

1

]

]

]

]

]

]

=

[

[

[

[

[

[

1 Å I

1

0 Å I

1

0 Å I

1

1 Å I

1

]

]

]

]

]

]

.

The scaling coe�cients applied to each I

1

block are recognized to be I

1

itself. This suggest that

the next matrix in the sequence could be obtained as

I

3

=

[

[

[

[

[

[

1 Å I

2

0 Å I

2

0 Å I

2

1 Å I

2

]

]

]

]

]

]

.

It is useful to introduce a notation for these operations: I

2

= I

1

� I

1

, I

3

= I

1

� I

2

.

DEFINITION. The exterior product of matrices A =[a

ij

]��

m×n

and B ��

p×q

is the matrix C ��

(mp)×(nq)

C =A �B =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

11

B a

12

B . . . a

1n

B

a

21

B a

21

B . . . a

2n

B

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

a

m1

B a

m2

B . . . a

mn

B

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

Recall that the inner product of u ,v ��

m

is the scalar u

T

v , and one can think of an inner pro-

duct as �reducing the dimensions of its factors�. In contrast the exterior product �increases the

dimensions of its factors�. An example of the exterior product has already been met, namely the

projection matrix along direction q of unit norm (�q �=1)

P

q

= qq

T

= q � q = [
q

1

q q

2

q . . . q

m

q
].

Using the exterior product de�nition the matrix I

q

is de�ned in terms of previous terms in the

sequence as

I

q

= I

1

� I

q�1

,q >1.

Such de�nitions based upon previous terms are said to be recursive.
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3.4. Walsh-Hadamard matrices

An alternative to specifying the signal b ��

m

as the linear combination b = Ib is now constructed

by a di�erent recursion procedure. As in the identity matrix case let m=2

p

and start from p=0,

m=1 with H

0

=[1]. For the next term choose however

H

1

=

[

[

[

[

[

[

1 1

1 �1

]

]

]

]

]

]

,

and de�ne in general

H

q

=H

1

�H

q�1

.

Julia can be extended to include de�nitions of the above Hadamard matrices.

4 using Hadamard

4 H0=hadamard(2^0)

[
1
] (12)

4 H1=hadamard(2^1)

[

[

[

[

[

[

1 1

1 �1

]

]

]

]

]

]

(13)

4 H2=hadamard(2^2)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(14)

4

The column vectors of the identity matrix are mutually orthogonal as expressed by

I

T

I =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

e

1

T

e

2

T

Å

Å

Å

e

m

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[
e

1

e

2

. . . e

m

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

e

1

T

e

1

e

1

T

e

2

. . . e

1

T

e

m

e

2

T

e

1

e

2

T

e

2

. . . e

2

T

e

m

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

e

m

T

e

1

e

m

T

e

2

. . . e

m

T

e

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= I .

The Hadamard matrices have similar behavior in that

H

q

T

H

q

=2

q

I

m

,m=2

q

,

and thus be seen to have orthogonal columns.

4 H2'*H2

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(15)
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The structure of Hadamard matrices allows a reconstruction from small cases just as simple as

that of the identity matrix, but the components of a Hadamardmatrix are quite di�erent. Rather

than display of the components a graphical visualization is insightful. The spy(A) function dis-

plays a plot of the non-zero components of a matrix

4 q=5; m=2^q; Iq=Matrix(1.0I,m,m); Hq=hadamard(m);

4 clf(); subplot(1,2,1); spy(Iq); subplot(1,2,2); spy(Hq.+1);

4 cd(homedir()*"/courses/MATH347DS/images"); savefig("L03Fig01.eps");

4

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Figure 1. The structure of the identity and Hadamard matrices for m=2

5

=32.

3.5. Sample sets and reconstructions

The behavior of the column vectors of I and H is instructive. Denote by b:��� the ECG

recording that would be obtained measurements were carried out for all t � [0,T]. This is obvi-

ously impossible since it would require an in�nite number of measurements. In practice, only

the values b

i

=b(t

i

) are recorded for t

i

= i(´t), which is a sample of the in�nite set of the possible

values. The sample set values are organized into the vector b . Function values b(t) for t ` t

i

can

be reconstructed through some assumption, for instance that

b(t)=b(t

i

)=b

i

for t � [t

i

, t

i+1

].

The above states that b(t) remains constant from t

i

to t

i

+ ´t . A simple example when b(t) =

sin(t) illustrates the approach.

4 T=2*pi; n=16; ´t=T/n; t=(0:n-1)*´t; b=sin.(t);

4 m=n^2; ´ts=T/m; ts=(0:m-1)*´ts; s=sin.(ts);

VECTOR SPACE DIMENSION 9



4 p=4*n; ´tw=T/p; tw=(0:p-1)*´tw; w=reshape((b.*[1 1 1 1])',(1,p))';

4 figure(3); clf(); plot(t,b,"o",ts,s,tw,w);

4 title("Reconstruction of sine from samples");

4 savefig("L04Fig02.eps");

4

0 1 2 3 4 5 6

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Reconstruction of sine from samples

Figure 2. The reconstruction is a step function.

The reconstruction exhibits steps at which the function value changes. The column vectors of I

are well suited for such reconstructions.

4 n=8; In=Matrix(1.0I,n,n); Hn=hadamard(n);

4 figure(5); clf();

4 for j=1:n

subplot(8,2,2*j-1); plot(In[:,j])

subplot(8,2,2*j); plot(Hn[:,j])

end

4 title("Column vectors of I");

4 subplot(2,1,2);

4 for j=1:n

plot(Hn[:,j])

end

4 subplot(8,2,1); title("Identity matrix");

4 subplot(8,2,2); title("Hadamard matrix");

4 savefig("L04Fig03.eps");



4

0 2 4 6
0

1
Identity matrix

0 2 4 6
0.95
1.00
1.05

Hadamard matrix
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0
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0
1

0 2 4 6
0

1
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Figure 3. Comparison of column vectors of I ,H .

3.6. Naive ECG compression

ECG compression. What happens if the linear combinations expressing b ��

m

b = Ib =b

1

e

1

+ Å Å Å +b

m

e

m

=c

1

h

1

+ Å Å Å + c

m

h

m

=Hc

are truncated? The scaling coe�cients of the Hadamard linear combination are readily found

Hc =bÒH

T

(Hc)=H

T

bÒ (H

T

H )c =H

T

bÒmIc =H

T

bÒ c =

1

m

H

T

b .

Consider u to be the truncation of b = Ib to n <m terms

u =b

1

e

1

+ Å Å Å +b

n

e

n

.

Due to the choice of the significance of the components b

i

the above simply drops ECG recording

times for t >n (´t). The truncation of the Hadamard linear combination

v =c

1

h

1

+ Å Å Å + c

n

h

n

behaves quite di�erently.
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4 using MAT

4 DataFileName = homedir()*"/courses/MATH347DS/data/ecg/ECGData.mat";

4 DataFile = matopen(DataFileName,"r");

4 dict = read(DataFile,"ECGData");

4 data = dict["Data"]';

4 size(data)

[

[

[

[

[

[

65536

162

]

]

]

]

]

]

(16)

4 q=12; m=2^q; k=15; b=data[1:m,k];

4 Iq=Matrix(1.0I,m,m); Hq=hadamard(m); c=(1/m)*transpose(Hq)*b;

4 n=2^10; u=Iq[:,1:n]*b[1:n]; v=Hq[:,1:n]*c[1:n];

4 figure(1); clf(); subplot(3,1,1); plot(b);

4 subplot(3,1,2); plot(u);

4 subplot(3,1,3); plot(v);

4 cd(homedir()*"/courses/MATH347DS/images"); savefig("L03Fig02.eps");

4
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Figure 4. Comparison of original ECG (top) containing m=2

12

=4096 time samples with truncated linear

combinations based upon n =2

10

=1024 terms of the linear combinations using identity matrix I (middle),

and Hadamard matrix H (bottom).



3.7. Basis subsets and compression

Neither of the truncated linear combinations seems particularly useful. Truncation of the I -

based linear combination cuts o� part of the signal, while that of the H -based linear combina-

tion introduces heart pulses not present in the original signal. The problem is the signi�cance

given to the ordering of the vectors into the linear combination. Consider �rst truncation of

b = Ib to obtain u . Rather than cutting o� part of the signal, an alternative data compression is

to use a larger time sample, say 4´t instead of ´t , a process known as down-sampling,

d =b[1: 4:m]��

m/4

.

4 w=fwht(b);

4 figure(6); clf(); plot(c,".");

4 plot(w,".");

4
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