
THE SINGULAR VALUE DECOMPOSITION

SYNOPSIS. The linear algebra framework in whichmatrix-vector multiplication represents a linear
combination and also corresponds to evaluation of a linear mapping has been shown to be com-
plete through the FTLA. In order to effectively solve the main problems of linear algebra within
this framework, bases must be constructed for the fundamental subspaces of a matrix. In order
for the bases to be computationally efficient they should be orthonormal. The existence of such
basis sets is guaranteed by the singular value decomposition theorem.

1. Orthogonal matrices
The fundamental theorem of linear algebra partitions the domain and codomain of a linear
mapping f :U→V . For real vectors spaces U =ℝn, V =ℝm the partition properties are stated in
terms of spaces of the associated matrix A as

C(A)⊕N (AT)=ℝm C(A)⊥N (AT) C(AT)⊕N (A)=ℝn C(AT)⊥N (A) .

The dimension of the column and row spaces r =dimC(A)=dimC(AT) is the rank of the matrix,
n− r is the nullity of A, andm− r is the nullity of AT . A infinite number of bases could be defined
for the domain and codomain. It is of great theoretical and practical interest to define bases with
properties that facilitate insight or computation.

The above partitions of the domain and codomain are orthogonal, and suggest searching for
orthogonal bases within these subspaces. Introduce a matrix representation for the bases

U = � u1 u2 . . . um �∈ℝm×m,V = � v1 v2 . . . vn �∈ℝn×n,

with C(U ) =ℝm and C(V ) =ℝn. Orthogonality between columns ui, uj for i ≠ j is expressed as
ui
T uj =0. For i = j , the inner product is positive ui

T ui > 0, and since scaling of the columns of U
preserves the spanning property C(U )=ℝm, it is convenient to impose ui

Tui=1. Such behavior is
concisely expressed as a matrix product

U TU = Im,

with Im the identitymatrix in ℝm. Expanded in terms of the column vectors of U the first equality
is
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It is useful to determine if a matrix X exists such that UX = Im, or

UX =U � x1 x2 . . . xm �= � e1 e2 . . . em �.

The columns of X are the coordinates of the column vectors of Im in the basis U , and can readily
be determined

Uxj = ej⇒U TUxj =U T ej⇒ Imxj =
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ej⇒xj = (U T)j,
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where (U T)j is the j th column of U T , hence X =U T , leading to

U TU = I =UU T .

Note that the second equality

� u1 u2 . . . um �� u1 u2 . . . um �T = � u1 u2 . . . um �
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=u1u1

T +u2u2
T + ⋅ ⋅ ⋅ +umum

T = I

acts as normalization condition on the matrices Uj =ujuj
T .

DEFINITION. A square matrix U is said to be orthogonal if U TU =UU T = I.

2. Intrinsic basis of a linear mapping
Given a linear mapping f :U →V , expressed as y = f (x ) =Ax , the simplest description of the
action of A would be a simple scaling, as exemplified by g (x ) = ax that has as its associated
matrix aI . Recall that specification of a vector is typically done in terms of the identity matrix
b = Ib , but may be more insightfully given in some other basis Ax = Ib . This suggests that espe-
cially useful bases for the domain and codomain would reduce the action of a linear mapping to
scaling along orthogonal directions, and evaluate y =Ax by first re-expressing y in another basis
U , Us = Iy and re-expressing x in another basis V , Vr = Ix . The condition that the linear operator
reduces to simple scaling in these new bases is expressed as si=σi ri for i =1,...,min (m,n), with σi

the scaling coefficients along each direction which can be expressed as a matrix vector product
s =Σr , where Σ∈ℝm×n is of the same dimensions as A and given by
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.

Imposing the condition that U ,V are orthogonal leads to

Us = y ⇒ s =U Ty ,Vr =x ⇒ r =V Tx ,

which can be replaced into s =Σr to obtain

U Ty =ΣV Tx ⇒ y =U ΣV Tx .

From the above the orthogonal bases U ,V and scaling coefficients Σ that are sought must satisfy
A =U ΣV T . The SVD theorem states that the matrix factors U ,Σ,V do indeed exist.

THEOREM. Every matrix A ∈ℝm×n has a singular value decomposition (SVD)

A =U ΣV T ,



with properties:

1. U ∈ℝm×m is an orthogonal matrix, U TU = Im;

2. V ∈ℝm×m is an orthogonal matrix, V TV = In;

3. Σ∈ℝm×n is diagonal, Σ=diag(σ1, . . . ,σp), p=min (m,n), and σ1�σ2� ⋅ ⋅ ⋅ �σp�0.

The scaling coefficients σj are called the singular values of A. The columns of U are called the lest
singular vectors, and those of V are called the right singular vectors. Carrying out computation
of the matrix products
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leads to a representation of A as a sum

A =�
i=1

r

σiuiviT ,

with r �min (m,n). Written out in full, the above sum is

A =σ1u1v1T +σ2u2v2T + ⋅ ⋅ ⋅ +σrurvrT .

Each product uiviT is a matrix of rank one, and is called a rank-one update. Truncation of the
above sum to p terms leads to an approximation of A

A ≅Ap=�
i=1

p

σiuiviT .

In very many cases the singular values exhibit rapid decay, σ1≫σ2≫ ⋅ ⋅ ⋅, such that the approxi-
mation above is an accurate representation of the matrix A for p≪ r .

The singular vector matrices U ,V specify the intrinsic directions within ℝm,ℝn along which the
matrix A acts as a simple scaling transformation. For example, applying the linear mapping to
the v1 vector, f (v1)=Av1, leads to

Av1= (((((((((((((�
i=1

p

σiuiviT)))))))))))))v1=�
i=1

p

σiui(viTv1)=σ1u1.
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Since σ1�σ2� ⋅⋅⋅�σr >0, the above states that the input direction most amplified by the f (x )=Ax
mapping is v1 and the result is the vector σ1u1. The two-norm of v1 is equal to one and that of
σ1u1 is σ1. The conclusion is that σ1 is the maximal amplification factor in the two-norm

σ1= max
‖x‖2=1

‖Ax‖2,

and the above satisfies the properties of a norm over matrices leading to the definition

‖A‖2= max
‖x‖2=1

‖Ax‖2.

The largest singular value is thus the two-norm of a matrix.

3. SVD solution of linear algebra problems
The SVD can be used to solve common problems within linear algebra.

Linear systems. To change from vector coordinates b in the canonical basis I ∈ℝm×m to coor-
dinates x in some other basis A ∈ℝm×m, a solution to the equation Ib =Ax can be found by the
following steps.

1. Compute the SVD, U ΣV T =A;

2. Find the coordinates of b in the orthogonal basis U , c =U Tb ;

3. Scale the coordinates of c by the inverse of the singular values yi= ci/σi, i =1, . . . ,m, such
that Σy = c is satisfied;

4. Find the coordinates of y in basis V T , x =Vy .

Least squares. In the above A was assumed to be a basis, hence r = rank(A)=m. If columns of
A do not form a basis, r <m, then b ∈ℝm might not be reachable by linear combinations within
C(A). The closest vector to b in the 2-norm is however found by the same steps, with the simple
modification that in Step 3, the scaling is carried out only for non-zero singular values, yi=ci/σi,
i =1, . . . , r .

The pseudo-inverse. From the above, finding either the solution of Ax = Ib or the best approx-
imation possible if A is not of full rank, can be written as a sequence of matrix multiplications
using the SVD

(U ΣV T)x =b⇒U (ΣV Tx )=b⇒ (ΣV Tx )=U Tb⇒V Tx =Σ+U Tb⇒x =VΣ+U Tb ,

where the matrix Σ+ ∈ ℝn×m (notice the inversion of dimensions) is defined as a matrix with
elements σi

−1 on the diagonal, and is called the pseudo-inverse of Σ. Similarly the matrix

A+=VΣ+U T

that allows stating the solution of Ax =b simply as x =A+b is called the pseudo-inverse of A. Note
that in practice A+ is not explicitly formed. Rather the notation A+ is simply a concise reference
to carrying out steps 1-4 above.
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