
LEAST SQUARES APPROXIMATION

SYNOPSIS. Having established the key theoretical results, the main linear algebra problems can
now be solved. The typical scenario within data science applications is that a large dimen-
sional vector representation of some object is available and greater insight is sought by seeking
a description in terms of linear combination of a small number of vectors. The large dimen-
sional object might not be exactly recovered and the focus is on obtaining the best possible
approximation. In Euclidean spaces with distances measured by the 2-norm, best approximants
are readily found by the generalization of the Pythagorean theorem to high-dimensional spaces.

1. Orthogonal projection
Consider a partition of a vector space U into orthogonal subspaces U =V ⊕W , V =W ⊥,W =V ⊥,
typically U =ℝm, V ⊂ℝm, W ⊂ℝm, dimV = n, dimW =m− n. If V = � v1 . . . vn �∈ℝm×n is a basis
for V and W = � w1 . . . wm−n �∈ℝm×(m−n) is a basis for W, then U = � v1 . . . vn w1 . . . wm−n � is
a basis for U . Even though the matrices V ,W are not necessarily square, they are said to be
orthonormal when all columns are of unit norm and orthogonal to one another. In this case
computation of the matrix product V TV leads to the formation of the identity matrix within ℝn

V TV =

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[
[
[v1T

v2T

⋅⋅⋅
vnT]]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]
]
]
� v1 v2 . . . vn �=

[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[
[
[v1Tv1 v1Tv2 . . . v1Tvn
v2Tv1 v2Tv2 . . . v2Tvn
⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅

vnTv1 vnTv2 . . . vnTvn]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]
]]]]]
]
]
= In.

Similarly, W TW = Im−n. Whereas for the square orthogonal matrix U multiplication both on the
lest and the right by its transpose leads to the formation of the identity matrix

U TU =UU T = Im,

the same operations applied to rectangular orthogonal matrices lead to different results

V TV = In,VV T = � v1 v2 . . . vn �

[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[
[[[[[[
[
[v1T

v2T

⋅⋅⋅
vnT]]]]]]]]]]]]]]]

]]]]]]]]]]]]]]]]
]]]]]]
]
]
=�

i=1

n

viv iT , rank(viv iT)=1

A simple example is provided by taking V = Im ,n, the first n columns of the identity matrix in
which case

VV T =�
i=1

n

ei eiT = [[[[[[[[[In 0
0 0]]]]]]]]]∈ℝm×m.

Applying P =VV T to some vector b ∈ℝm leads to a vector r = Pb whose first n components are
those of b , and the remaining m − n are zero. The subtraction b − r leads to a new vector s =
(I −P)b that has the first components equal to zero, and the remaining m−n the same as those
of b . Such operations are referred to as projections, and for V = Im ,n correspond to projection onto
the span{e1, . . . , en}.

LEAST SQUARES APPROXIMATION 1

Returning to the general case, the orthogonal matrices U ∈ ℝm×m, V ∈ ℝm×n, W ∈ ℝm×(m−n) are
associated with linear mappings b = f (x)=Ux , r = g (b)= Pb , s =h (b)= (I − P)b . The mapping f
gives the components in the I basis of a vector whose components in the U basis are x . The
mappings g ,h project a vector onto span{v1, . . . ,vn}, span{w1, . . . ,wm−n}, respectively. When V ,W
are orthogonal matrices the projections are also orthogonal r⊥ s . Projection can also be carried
out onto nonorthogonal spanning sets, but the process is fraught with possible error, especially
when the angle between basis vectors is small, and will be avoided henceforth. Notice that
projection of a vector already in the spanning set simply returns the same vector, which leads
to a general definition.

DEFINITION. The mapping is called a projection if f ∘ f = f, or if for any u ∈U, f (f (u))= f (u). With P
the matrix associated f, a projection matrix satisfies P 2=P.

Orthogonal projections onto the column space C(Q) of an orthonormal matrix are of great prac-
tical utility, and satisfy the above definition

PQ =QQT

PQ
2 =PQPQ =QQTQQT =Q (QTQ)QT =QIQT =QQT =PQ .

2. Gram-Schmidt algorithm
Orthonormal vector sets {q1, . . . , qn} are of the greatest practical utility, leading to the question
of whether some such a set can be obtained from an arbitrary set of vectors {a1, . . . , an}. This is
possible for independent vectors, through what is known as the Gram-Schmidt algorithm

1. Start with an arbitrary direction a1
2. Divide by its norm to obtain a unit-norm vector q1= a1/‖a1‖
3. Choose another direction a2
4. Subtract off its component along previous direction(s) a2− (q1

Ta2)q1

5. Divide by norm q2= (a2− (q1
Ta2)q1)/‖a2− (q1

Ta2)q1‖
6. Repeat the above

a1

a2

q1

q2

a2− (q1
Ta2)q1

P1a2= (q1 q1
T)a2= q1 (q1

Ta2)= (q1
Ta2) q1

The above geometrical description can be expressed in terms of matrix operations as

A = (a1 a2 . . . an)= (q1 q2 . . . qn)

(((((((((((((((
(((((((((((((((
(((((((((((((((
((

(

(r11 r12 r13 . . . r1n
0 r22 r23 . . . r2n
0 0 r33 . . . r3n
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅ ⋅ ⋅⋅⋅
0 0 rmn)))))))))))))))

)))))))))))))))
)))))))))))))))
))

)

)
=QR ,

equivalent to the system

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{
{
{ a1= r11q1

a2= r12q1+ r22q2

⋅⋅⋅
an= r1nq1+ r2nq2+ . . . + rnnqn

.

The system is easily solved by forward substitution resulting in what is known as the (modified)
Gram-Schmidt algorithm, transcribed below both in pseudo-code and in Julia.
Algorithm (Gram-Schmidt)

Given n vectors a1, . . . ,an
Initialize q1= a1,..,qn= an, R = In
for i =1 to n
rii= (qi

Tqi)1/2
if rii< ϵ break;
q i= q i/rii
for j = i+1 to n
rij = q i

Taj; qj = qj − rijq i

end
end
return Q ,R

∴ function mgs(A)
m,n=size(A); Q=A; R=eye(n);
for i=1:n
R[i,i] = sqrt(Q[:,i]'*Q[:,i]);
if (R[i,i]<eps) break;
Q[:,i] = Q[:,i]/R[i,i];
for j=i+1:n
R[i,j] = Q[:,i]'*A[:,j];
Q[:,j] = Q[:,j] - R[i,j]*Q[:,i];

end;
end;
return Q,R

end
The input matrix A might have linearly dependent columns in which case rii≈0 for some i , and
the if-instruction interrupts the algorithm. The Gram-Schmidt algorithm furnishes a factoriza-
tion

QR =A

with Q ∈ℝm×n an orthonormal matrix and R ∈ℝn×n an upper triangular matrix, known as theQR-
factorization. Since the column vectors within Q were obtained through linear combinations of
the column vectors of A, C(A)=C(Q). TheQR-factorization is of great utility in solving problems
within linear algebra.

3. Least squares problems in ℝm

3.1. Problem formulation and solution by orthogonal projection
A typical situation in applications is that a vector y ∈ℝm represents a complex object withm≫1.
A simpler representation of the object is sought through a linear combination v =Ac , with A ∈
ℝm×n and n <m, usually m≪n (Fig. 1).

LEAST SQUARES APPROXIMATION 3

C(A)
y ∈ℝm

v ∈ℝm

u

Figure 1. Least squares problem: find v ∈C(A), A ∈ℝm×n closest to some given y in the 2-norm

The magnitude of the difference between the exact object y and the approximation Ac is mea-
sured through a norm, and in least squares the 2-norm is adopted. The problem is to minimize
the error ε =‖e‖=‖y −Ac‖= (eTe)1/2. This is stated mathematically as

min
c∈ℝn

‖y −Ac‖,

and within ℝm the minimal (2-norm) distance is obtained when y −v is orthogonal to C(A). Note
that is another type of norm were to be adopted, the orthogonality condition would no longer
necessarily hold. For the 2-norm however, the orthogonality condition leads to a straightfor-
ward solution of the problem through orthogonal projection:

1. Find an orthonormal basis for column space of A by QR factorization, QR =A.

2. State that v is the projection of y , v =PC(A)y =PQy =QQTy .

3. State that v is within the column space of A, v =Ac =QRc .

4. Set equal the two expressions of v , QQTy =QRc . This is an equality between two linear
combinations of the columns of Q . For Q orthonormal the scaling coefficients of the two
linear combinations must be equal leading to Rc =QTy .

5. Solve the triangular system to find c .

3.2. Linear regression

The approach to compressing data D = {(xi,yi)| i =1, . . . ,m} suggested by calculus concepts is to
form the sum of squared differences between y (xi) and yi, for example for y (x)= c0+ c1 x when
carrying out linear regression,

S(c0, c1)=�
i=1

m

(y (xi)−yi)2=�
i=1

m

(c0+ c1xi−yi)2

and seek (c0, c1) that minimize S(c0, c1). The function S(c0, c1)�0 can be thought of as the height
of a surface above the c0c1 plane, and the gradient ∇S is defined as a vector in the direction of
steepest slope. When at some point on the surface if the gradient is different from the zero
vector ∇S ≠ 0, travel in the direction of the gradient would increase the height, and travel in
the opposite direction would decrease the height. The minimal value of S would be attained

when no local travel could decrease the function value, which is known as stationarity condition,
stated as ∇S =0. Applying this to determining the coefficients (c0, c1) of a linear regression leads
to the equations

∂S
∂c0

=0⇒2�
i=1

m

(c0+ c1xi−yi)=0⇔mc0+ (((((((((((((�
i=1

m

xi)))))))))))))c1=�
i=1

m

yi,

∂S
∂c1

=0⇒2�
i=1

m

(c0+ c1xi−yi)xi=0⇔ (((((((((((((�
i=1

m

xi)))))))))))))c0+(((((((((((((�
i=1

m

xi2)))))))))))))c1=�
i=1

m

xiyi.

The above calculations can become tedious, and do not illuminate the geometrical essence of the
calculation, which can be brought out by reformulation in terms of a matrix-vector product that
highlights the particular linear combination that is sought in a liner regression. Form a vector
of errors with components ei =y (xi)−yi, which for linear regression is y (x)= c0+ c1x . Recognize
that y (xi) is a linear combination of 1 and xi with coefficients c0, c1, or in vector form

e = [[[[[[[[[[[[[[[[
[[[[
[
[1 x1
⋅⋅⋅ ⋅⋅⋅
1 xm]]]]]]]]]]]]]]]]

]]]]
]
][[[[[[[[[c0c1]]]]]]]]]− y = � 1 x � c − y =Ac − y .

The norm of the error vector ‖e‖ is smallest when Aa is as close as possible to y . Since Aa is
within the column space of C(A), Aa ∈C(A), the required condition is for e to be orthogonal to
the column space

e⊥C(A)⇒ATe = [[[[[[[[[[[1
T

xT]]]]]]]]]]]e = [[[[[[[[[[[1
Te

xTe]]]]]]]]]]]= [[[[[[[[[00]]]]]]]]]=0
ATe =0⇔AT(Ac − y)=0⇔ (ATA)c =ATy =b⇔Nc =b .

The above is known as the normal system, with N =ATA is the normal matrix. The system Nc =b
can be interpreted as seeking the coordinates in the N =ATA basis of the vector b =AT y . An
example can be constructed by randomly perturbing a known function y (x)=a0+a1x to simulate
measurement noise and compare to the approximate c̃ obtained by solving the normal system.

∴ m=100; x=(0:m-1)./m; c0=2; c1=3; yex=c0.+c1*x; y=(yex.+rand(m,1).-0.5);

∴ A=ones(m,2); A[:,2]=x[:]; At=transpose(A); N=At*A; b=At*y;

∴ c = N\b

[[[[[[[[[1.95247191460174883.114552636517776]]]]]]]]] (1)

∴

3.3. Least squares polynomial approximations of data

Forming the normal system of equations can lead to numerical difficulties, especially when the
columns of A are close to linear dependence. It is preferable to adopt the general procedure of
solving a least squares problem by projection, in which case the above linear regression becomes:

QR =A,Rc =QTy .

LEAST SQUARES APPROXIMATION 5

∴ QR=qr(A); Q=QR.Q[:,1:2]; R=QR.R[1:2,1:2];

∴ c = R\(transpose(Q)*y)

[[[[[[[[[1.95247191460175043.114552636517771]]]]]]]]] (2)

∴

The above procedure can be easily extended to define quadratic or cubic regression, the problem
of finding the best polynomials of degree 2 or 3 that fit the data. Quadratic regression is simply
accomplished by adding a column to A containing the squares of the x vector

A = � a1 a2 a3 �= � 1 x x 2 �

with the column vector ak =x k−1∈ℝm has components xik−1 for i =1, 2, . . . ,m.

∴ m=100; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+c1*x.+c2*x.^2;

∴ y=(yex.+rand(m,1).-0.5);

∴ A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3];
R=QR.R[1:3,1:3];

∴ c = R\(transpose(Q)*y)

[[[[[[[[[[[[[[[[
[[[[
[
[1.968925863819198
2.9292845098793223
−4.836797382728068]]]]]]]]]]]]]]]]

]]]]
]
] (3)

∴

	Least Squares Approximation
	1. Orthogonal projection
	2. Gram-Schmidt algorithm
	3. Least squares problems in ℝ^m
	3.1. Problem formulation and solution by orthogonal projection
	3.2. Linear regression
	3.3. Least squares polynomial approximations of data

