LINEAR SYSTEM SOLUTION 1

LINEAR SYSTEM SOLUTION

SYNOPSIS. The traditional problem within linear algebra is to find the scaling coefficients of a
linear combination to exactly represent some given vector. Methods with a long history of hand
computation have been developed for this purpose, and can still offer insight into properties of
linear mappings and their associated matrices.

1. Orthogonal projectors and linear systems

Consider the linear system Ax =b with A€ER™", b €R™ given. The scaling coefficients x €R"” are
sought and are said to be a solution of the linear system when the equation Ax = b is satisfied.
Orthogonal projectors and knowledge of the four fundamental matrix subspaces allows us to
succintly express whether there exist no solutions, a single solution of an infinite number of
solutions:

~ Consider the factorization QR = A, the orthogonal projector P = QQ’, and the comple-
mentary orthogonal projector 1 - P

- If |(1-P)b| #0, then b has a component outside the column space of A, and Ax =b has
no solution

- If |(1-P)b| =0, then b€ C(Q)=C(A) and the system has at least one solution

- If N(A)={0} (null space only contains the zero vector, i.e., null space of dimension 0) the
system has a unique solution

- IfdimN(A)=n-r>0, then a vector y € N(A) in the null space is written as
y=Cz1+ ...+ Cp_rZn_s
and if x is a solution of Ax=b, so is x + y, since
Ax+y)=Ax+CAz1+...+ChjAzy_,=b+0+...+0=h
The linear system has an (n - r)-parameter family of solutions

If a solution exists, it can be found by backsubstitution solution of Rx = Q" b. If multiple solu-
tions exist, an orthonormal basis Z is found for the null space and the family of solutions is
x+Zy.

2. Gaussian elimination and row echelon reduction

Suppose now that A x = b admits a unique solution. The QR factorization approach of reducing
the problem to Rx= Qb is one procedure to compute the solution. It has the benefit of working
with the orthonormal @ matrix. Finding the orthonormal @ matrix is however a computational
expense. Recall that orthogonality implied linear independence. Other approaches might exist
that only impose linear independence, without orthogonality. Gaussian elimination is the main
such approach. Consider the system
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The idea is to combine equations such that we have one fewer unknown in each equation. Ask:
with what number should the first equation be multiplied in order to eliminate x; from sum of
equation 1 and equation 2? This number is called a Gaussian multiplier, and is in this case -2.
Repeat the question for eliminating x; from third equation, with multiplier -3.

X1+2Xx;-Xx3 = 2 X1+2Xx-X3 = 2
2X1-X+4X3 = 2 =1 -5x+3x3 = -2
3x1-x-x3 = 1 -7X,+2x3 = -5

Now, ask: with what number should the second equation be multiplied to eliminate x, from sum
of second and third equations. The multiplier is in this case -7/5.

X1+2Xy-X3 = 2 X15+2X23_X3 - 22
~5x+3x3 = -2 = "121+ X3 = 7
-7X2+2x3 = =5 5 X = o

Starting from the last equation we can now find x3=1, replace in the second to obtain -5 x,=-5,
hence x,=1, and finally replace in the first equation to obtain x;=1.

The above operations only involve coefficients. A more compact notation is therefore to work
with what is known as the "bordered matrix" and work with coefficients arising in rows

[1]2 -1]2 12 1|2 (‘)25‘3‘ 22
[Ab]=[2-1 1|2|~[A bi]=[0[-5] 3 |-2|~[A b2 ]=|" — |
3 -1 -1|1 0 -7 2|-5 0 0|-—|-%

In Julia the above operations would be carried out as

& A=[1.2-12;2-112; 3 -1-11]; A[2,:]1=A[2,:]1-2*A[1,:]1; A[3,:]1=A[3,:]1-3*A[1,:];

LA

1.0 20 -1.0 20
0.0 -5.0 3.0 -2.0 (1)
0.0 -7.0 2.0 -5.0

s~ A[3,:1=A[3,:1-(7/5)*A[2,:1; A

1.0 2.0 1.0 2.0
0.0 -5.0 3.0 ~2.0 )
0.0 0.0 -2.1999999999999993 -2.2

Once the above triangular form has been obtained, the solution is found by back substitution, in
which we seek to form the identity matrix in the first 3 columns, and the solution is obtained in
the last column.

T2 -1 2 12 1211001
0 -5 ?1 ‘12]~0—53—2~o101

A T e 0 1 1] oot
00 -+ -
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The operations arising in Gaussian elimination are successive linear combinations of rows that
maintain the solution of the linear system. This idea is useful in identifying the fundamental
subspaces associated with a matrix. The matrices arising at successive stages of the procedure
are said to be similar to one another

A ~ A1 ~ Az,
and since Ay is obtained by linear combination of the rows of A,_1, the row space is not changed
C(AT)= ClaT) = C(a) =

During the procedure a pivot element is identified in the diagonal position, as shown bordered
above. If a zero value is encountered rows are permuted to bring a non-zero element to the pivot
position. If a non-zero pivot value cannot be found by row permutation, one is sought by column
permutations also. If a non-zero pivot cannot be found by either row or column permutations,
the matrix is rank-deficient r = rank(A) < min (m, n) and has a non-trivial null space as in the
following examples

123 3 3
A=[0 1 1|€R*3b=|1]|€Rc=|1|€ER.
123 3 4
[1 2 3|3] 12 3|3] X1+2X,+3x3 =3
[Ab]=[011]1]|~[A by]=[011|1]|= Xp+x3 =1,
|12 33 0000 0 =0
[1 2 3]|3] [1 2 3]3] X1+2x,+3x3 =3
[Ac]=|011|1]|~[A ¢]=[011]1|= Xo+x3 =1,
[ 12 3|4 (0001 0 =1

The Ax = b has an infinite number of solutions, while the Ax = ¢ system has no solutions. Note
that A; has a row of zeros, hence the rows must be linearly dependent and N(A) #{0}. By the
FTLA when b€ C(A) an infinite number of solutions is obtained, and for ¢€ C(A) no solutions are
obtained.

The rows with non-zero pivot elements are linearly independent, and reduction to the above
row-echelon form is useful to identify the rank of a matrix. The first non-zero entry on a row is
called either a pivot or a leading entry. A matrix is said to be brought to reduced row-echelon
form when:

- all zero rows are below non-zero rows;
- in each non-zero row, the leading entry is to the left of lower leading entries;
- each leading entry equals 1 and is the only non-zero entry in its column.

In contrast to the Gram-Schmidt procedure, Gaussian elimination does not impose orthogo-
nality between rows, nor that a row have unit norm. This leads to fewer computations, and is
therefore well-suited to hand computation of small-dimensional matrices.

The steps in Gaussian elimination can be precisely specified in a format suitable for direct com-
puter coding.

Algorithm Gauss elimination without pivoting



fors=1tom-1
fori=s+1tom
t=_ais/ass
for j=s+1tom
a,-j=a,~j+t-asj

b,'=b,'+t‘b5

for s=m downto 1
Xs=bs/ass
fori=1tos-1

bi=b;-ajs- x;

return x

The variant of the above algorithm that accounts for possible zeros arising in a diagonal position
is known as Gauss elimination with pivoting.

Algorithm Gauss elimination with partial pivoting

p=1:m (initialize row permutation vector)
for s=1tom-1
piv = abs(aps) )
fori=s+1tom
mag = abs(ap,s)
if mag> piv then
piv=mag; k = p(s); p(s) = p(i); p(i) = k
if piv<e then break(“Singular matrix”)
t=—ap()s/ Ap(s)s
for j=s+1tom
Ap(ij = Ap(i)j + L - Ap(s)j
by = bpii + - by

for s=m downto 1
X5 = bps)/ Ap(s)s
fori=1tos-1
bty = bpiiy = apiiys - X

return x

3. LU-factorization

The operations arising in Gaussian elimination correspond to a matrix factorization, analogous
to how the Gram-Schmidt procedure can be stated as the QR factorization. Revisting the pre-
vious example

2 1 2 -1 2

2 >Ax=b,A=|2 -1 1 |,b=|2|,

1 3 -1 -1 1

X1+2X2-X3
2X1—- X2+ X3
3X1—X2—X3
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the idea is to express linear combinations of rows as a matrix multiplication. Recall that Ax
is a linear combination of columns, and AX expresses multiple column linear combinations.
Linear combinations of columns are expressed as products in which the first factor contains the
columns and the second contains the scaling coefficients. Analogously linear combinations of
rows are expressed by products LA where now the left factor contains the scaling coefficients
entering into a linear combination of the rows of A. For example, the first stage of Gaussian
elimination for the above system can be expressed as

00 12 12—
L1A——210 2 - 0 -5
-3 01 3—1—1 0 -7

The next stage is also expressed as a matrix multiplication, after which an upper triangular
matrix U is obtained

1T 0 O0O}1 2 - 1 2 —1
LL;A=]0 1 0f0 - 3 0 -5 =U.
0-7/51f[0 -7 2 00 —11/5

For a general matrix A€R™" the sequence of operations is

Lyq.. Lyl A=U.

DEFINITION. The matrix
0
0
1
. —[k+1,k
. —lk+2,k

O O O O =
O O O O O

0 ... —lpg ... 1
with [; = (k)/ aff‘,)(, and AW = (aﬁﬁ?) the matrix obtained after step k of row echelon reduction (or,

equivalently, Gaussian elimination) is called a Gaussian multiplier matrix.

The inverse of a Gaussian multiplier is

1 0 0
0 0 0
0 1 0
L7(1= 0 ... lk+1,k cee 0 =1 =(Lg-1).
0 ... Lo --- 0
0 ... lm,k oo 1

From (Lp_1Lm-3...LoL1)A = U obtain

A=(Lp1Llpo...LL) 'WU=0L'0G"...- L} ,U=LU.



The above is known as an LU factorization, short for lower-upper factorization. Solving a linear
system by L U-factorization consists of the steps:

1. Find the factorization LU=A

2. Insert the factorization into A x=5b to obtain (L U)x=L(U x)=L y =b, where the notation
y =U x has been introduced. The system

Ly=»b
is easy to solve by forward substitution to find y for given b

3. Finally find x by backward substitution solution of
Ux=y

The various procedures encountered so far to solve a linear system are described in the following
table.

Given A€ER™"

Singular value decomposition ~ Gram-Schmidt Lower-upper

Transformation of coordinates Ax=»b

UZV'=A QR=A LU=A

(UXV)x=b=Uy=b=y=U"b (QR)x=b=Qy=b,y=Q'bh (L U)x = b = Ly =
b (forward subtofind)y

Yz=y=z=3"y Rx =y (backsubtofind x) Ux =y (back sub to find x)

Vix=z=x=Vz

4. Matrix inverse
For A€R™ " the pseudo-inverse A" has been introduced based on the SVD, A=UX V' as
At=vItu'.

When A€R™" is square and of full rank the system Ax = b has a solution that can be stated as
x=A""h, where A" is the inverse of A. The matrix A is said to be invertible X €R™™ such that

AX=XA=1,

and in this case X = A™' is the inverse of A.

The inverse can be computed by extending Gauss elimination
LAl 1]-[1] x],

a procedure known as the Gauss-Jordan algorithm.

A square matrix has an inverse only when it is of full rank. The following are equivalent state-
ments:

a) A invertible
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b) Ax=b has a unique solution for all b €R™
c) Ax =0 has a unique solution
d) The reduced row echelon form of A is 1

e) A can be written as product of elementary matrices
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