DATA STABILITY

1. The eigenvalue problem

DATA STABILITY

A=UZVT A=QR A=LU

o Consider square matrix A € R"™". The eigenvalue problem asks for vectors x € C”, x £0, scalars A € C such

that

Ax=2Ax (1)

« Eigenvectors are those special vectors whose direction is not modified by the matrix A

e Rewrite (1): (A— A1)x =0, and deduce that A— AI must be singular in order to have non-trivial solutions

det(A-11)=0

e Consider the determinant

an-4A ap ... din
det(A-AI)= a:zl 022:—/1 o a?m
Aml am2 amm—,l

¢ From determinant definition ““sum of all products choosing an element from row/column"

det(A=AD) = (=1)" A"+ X" ' . 4 cpi A+ cpu=pa(R)

is the characteristic polynomial associated with the matrix A, and is of degree m

e A e R™™ has characteristic polynomial p4(1) of degree m, which has m roots (Fundamental theorem of

algebra)

o Example

octave] theta=pi/3.; A=[cos(theta) -sin(theta); sin(theta) cos(theta)]

A =

0.50000 -0.86603
0.86603  0.50000

octave] eig(A)

ans =

0.50000 + 0.86603i
0.50000 - 0.866031

octave] [R,lambdal=eig(A);

octave] disp(R);

0.70711 + 0.000001 0.70711 - 0.000001
0.00000 - 0.707111 0.00000 + 0.70711i

octave] disp(lambda)

Diagonal Matrix

0.50000 + 0.866031

0

0 0.50000 - 0.866031i



octave] A=[-210000; 1-21000;01-2100;001-210;0001-21;00

-2

S O O+

001 -2];
octave] disp(A)
1 0 0 0 0
-2 1 0 0 0
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
0 0 0 1 -2

0

octave] lambda=eig(A);

octave] disp(lambda) ;

-3
-3
-2
-1
-0
-0

.80194
.24698
.44504
.55496
.75302
.19806

octave]

For A e R™"™, the eigenvalue problem 5 (x #0) can be written in matrix form as
AX=XA,X=(x;...x,)eigenvector, A =diag(4y,..., 4,,) eigenvalue matrices
If the column vectors of X are linearly independent, then X is invertible and A can be reduced to diagonal form

A=XAX'A=UZVT

Diagonal forms are useful in solving linear ODE systems
Y=Aye Xy =A Xy
Also useful in repeatedly applying A
ug=A*ug=AA.. . Aug= XAX)(XAX") ... (XAX ug=X NX"u

When can a matrix be reduced to diagonal form? When eigenvectors are linearly independent such that the
inverse of X exists

Matrices with distinct eigenvalues are diagonalizable. Consider A € R"™" with eigenvalues A;# A4 for j#k,
Jke{l,...,m}

Proof. By contradiction. Take any two eigenvalues 1;# A and assume that x; would depend linearly on xg,
x;=cx; for some ¢ #0. Then

Ax1=/11x1 = Ax1=/11x1
Axo=Axxp = Acxi=Acx,

and subtracting would give 0= (1, — 12)x;. Since x; is an eigenvector, hence x| #0 we obtain a contradiction
1=y

The characteristic polynomial might have repeated roots. Establishing diagonalizability in that case requires
additional concepts

DEFINITION 1. The algebraic multiplicity of an eigenvalue A is the number of times it appears as a repeated root of
the characteristic polynomial p(1) =det(A— A1)
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Example. p(1)=A(A-1)(1- 2)? has two single roots 1; =0, 1, =1 and a repeated root 13 4=2. The eigenvalue 1 =2
has an algebraic multiplicity of 2

DEFINITION 2. The geometric multiplicity of an eigenvalue A is the dimension of the null space of A— A1

DEFINITION 3. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be
defective

PROPOSITION 4. A matrix is diagonalizable is the geometric multiplicity of each eigenvalue is equal to the algebraic
multiplicity of that eigenvalue.

« Finding eigenvalues as roots of the characteristic polynomial p(1) =det(A— A]) is suitable for small matrices
AeR™™
— analytical root-finding formulas are available only for m <4
— small errors in characteristic polynomial coefficients can lead to large errors in roots
¢ Octave/Matlab procedures to find characteristic polynomial
— poly(A) function returns the coefficients

— roots(p) function computes roots of the polynomial

| octavel A=[5 -4 2; 5 -4 1; -2 2 -3]; disp(A); |

5 -4 2
5 -4 1
-2 2 -3

| octave] p=poly(A); disp(p); |
1.00000 2.00000 -1.00000 -2.00000

| octave] r=roots(p); disp(r’); |

1.0000 -2.0000 -1.0000

| octave] |

« Find eigenvectors as non-trivial solutions of system (A — AI)x =0

4 -4 2 2 2 -4 22 -4
Ji=1=sA-21=l5 51|~ 0 0 -6|~| 0 0-6
-2 2 -4 5 -5 1 000

Note convenient choice of row operations to reduce amount of arithmetic, and use of knowledge that A — 1,1
is singular to deduce that last row must be null

¢ In traditional form the above row-echelon reduced system corresponds to

Ox1 +0xZ—6X3
Ox1 + 0xp + Ox3

—2)(?1 + 2)C2—4)C3
0

0 1
0 =>x:a[ 1 ],||x||:1=>a:1/‘/§
0

e In Octave/Matlab the computations are carried out by the null function

| octave] null (A+5*eye(3))’ |
ans = [](0x3)

| octave] |

o The eigenvalues of I € R¥3 are 1,53 =1, but small errors in numerical computation can give roots of the
characteristic polynomial with imaginary parts



|octave> lambda=roots(poly(eye(3))); disp(lambda’) |

1.00001 - 0.000011i 1.00001 + 0.00001i  0.99999 - 0.00000i

|octave> |

e In the following example notice that if we slightly perturb A (by a quantity less than 0.0005=0.05%), the
eigenvalues get perturb by a larger amount, e.g. 0.13%.

|octave] A=[-2 1 -1; 5 -3 6; 5 -1 4]; disp([eig(A) eig(A+0.001*(rand(3,3)-0.5))1) |

3.0000 + 0.0000i  3.0005 + 0.0000i
-2.0000 + 0.0000i -2.0000 + 0.01611i
-2.0000 + 0.0000i -2.0000 - 0.01611i

| octave] |

o Extracting eigenvalues and eigenvectors is a commonly encountered operation, and specialized functions exist
to carry this out, including the eig function

| octave> [X,Ll=eig(A); disp([L X1); |

-2.00000 0.00000 0.00000 -0.57735 -0.00000 0.57735
0.00000 3.00000 0.00000 0.57735 0.70711 -0.57735
0.00000  0.00000 -2.00000 0.57735 0.70711 -0.57735

| octave> disp(null(A-3*eye(3))) |

0.00000
0.70711
0.70711

| octave> disp(null (A+2*eye(3))) |

0.57735
-0.57735
-0.57735

| octave> |

e Recall definitions of eigenvalue algebraic m; and geometric multiplicities ;.

DEFINITION. A matrix which has n, <m; for any of its eigenvalues is said to be defective.

|octave> A=[-2 1 -1; 5 -3 6; 5 -1 4]; [X,Ll=eig(A); disp(L); |

Diagonal Matrix

-2.0000 0 0
0 3.0000 0
0 0 -2.0000

| octave> disp(X); |

-5.7735e-01 -1.91563e-17 5.7735e-01
5.7735e-01 7.0711e-01 -5.7735e-01
5.7735e-01 7.0711e-01 -5.7735e-01

| octave> disp(null (A+2%eye(3))); |

0.57735
-0.57735
-0.57735
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| octave> disp(rank(X))
2

|octave>

2. Computation of the SVD

o The SVD is determined by eigendecomposition of A”A, and AAT

- ATA=wWwzvHTWwzvT) =V (ZTZ) V7, an eigendecomposition of ATA. The columns of V are
eigenvectors of A”A and called right singular vectors of A

B=ATA=VETEzVvI=VAVT

- AAT=zvhHuzTvhHT =y (£xT) U7, an eigendecomposition of ATA. The columns of U are
eigenvectors of AA” and called left singular vectors of A

— The matrix X has form
gl
02

T= - eR7

and o; are the singular values of A.
e The singular value decomposition (SVD) furnishes complete information about A
— rank(A) =r (the number of non-zero singular values)

— U,V are orthogonal basis for the domain and codomain of A
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