Data Stability

𝑨=𝑼𝚺𝑽T 𝑨=𝑸𝑹 𝑨=𝑳𝑼

1.The eigenvalue problem

det(A-λI)=(-1)mλm+c1λm-1++cm-1λ+cm=pA(λ)

is the characteristic polynomial associated with the matrix A, and is of degree m

octave] 
theta=pi/3.; A=[cos(theta) -sin(theta); sin(theta) cos(theta)]

A =

0.50000 -0.86603

0.86603 0.50000

octave] 
eig(A)

ans =

0.50000 + 0.86603i

0.50000 - 0.86603i

octave] 
[R,lambda]=eig(A);
octave] 
disp(R);

0.70711 + 0.00000i 0.70711 - 0.00000i

0.00000 - 0.70711i 0.00000 + 0.70711i

octave] 
disp(lambda)

Diagonal Matrix

0.50000 + 0.86603i 0

0 0.50000 - 0.86603i

octave] 
A=[-2 1 0 0 0 0; 1 -2 1 0 0 0; 0 1 -2 1 0 0; 0 0 1 -2 1 0; 0 0 0 1 -2 1; 0 0 0 0 1 -2];
octave] 
disp(A)

-2 1 0 0 0 0

1 -2 1 0 0 0

0 1 -2 1 0 0

0 0 1 -2 1 0

0 0 0 1 -2 1

0 0 0 0 1 -2

octave] 
lambda=eig(A);
octave] 
disp(lambda);

-3.80194

-3.24698

-2.44504

-1.55496

-0.75302

-0.19806

octave] 

Definition 1. The algebraic multiplicity of an eigenvalue λ is the number of times it appears as a repeated root of the characteristic polynomial p(λ)=det(A-λI)

Example. p(λ)=λ(λ-1)(λ-2)2 has two single roots λ1=0, λ2=1 and a repeated root λ3,4=2. The eigenvalue λ=2 has an algebraic multiplicity of 2

Definition 2. The geometric multiplicity of an eigenvalue λ is the dimension of the null space of A-λI

Definition 3. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be defective

Proposition 4. A matrix is diagonalizable is the geometric multiplicity of each eigenvalue is equal to the algebraic multiplicity of that eigenvalue.

octave] 
A=[5 -4 2; 5 -4 1; -2 2 -3]; disp(A);

5 -4 2

5 -4 1

-2 2 -3

octave] 
p=poly(A); disp(p);

1.00000 2.00000 -1.00000 -2.00000

octave] 
r=roots(p); disp(r');

1.0000 -2.0000 -1.0000

octave] 
octave> 
lambda=roots(poly(eye(3))); disp(lambda')

1.00001 - 0.00001i 1.00001 + 0.00001i 0.99999 - 0.00000i

octave> 
octave] 
A=[-2 1 -1; 5 -3 6; 5 -1 4]; disp([eig(A) eig(A+0.001*(rand(3,3)-0.5))])

3.0000 + 0.0000i 3.0005 + 0.0000i

-2.0000 + 0.0000i -2.0000 + 0.0161i

-2.0000 + 0.0000i -2.0000 - 0.0161i

octave] 

octave> 
 [X,L]=eig(A); disp([L X]);

-2.00000 0.00000 0.00000 -0.57735 -0.00000 0.57735

0.00000 3.00000 0.00000 0.57735 0.70711 -0.57735

0.00000 0.00000 -2.00000 0.57735 0.70711 -0.57735

octave> 
disp(null(A-3*eye(3)))

0.00000

0.70711

0.70711

octave> 
disp(null(A+2*eye(3)))

0.57735

-0.57735

-0.57735

octave> 

Definition. A matrix which has nλ<mλ for any of its eigenvalues is said to be defective.

octave> 
A=[-2 1 -1; 5 -3 6; 5 -1 4]; [X,L]=eig(A); disp(L);

Diagonal Matrix

-2.0000 0 0

0 3.0000 0

0 0 -2.0000

octave> 
disp(X);

-5.7735e-01 -1.9153e-17 5.7735e-01

5.7735e-01 7.0711e-01 -5.7735e-01

5.7735e-01 7.0711e-01 -5.7735e-01

octave> 
disp(null(A+2*eye(3)));

0.57735

-0.57735

-0.57735

octave> 
disp(rank(X))

2

octave> 

2.Computation of the SVD