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Overview

• Linear dependence and independence

• Orthogonal, orthonormal vector sets

• Orthogonal matrices

• Basis, dimension

• Realistic application of vector operations framework: ECG representation and compression

− Sampling

− Recursive definition of I

− Hadamard-Walsh matrices

− Compression by truncation of linear combinations.
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• Let A∈Rm×n be a matrix with n column vectors, each with m components

A = [ a1 a2 ... an ], a1, a2, ..., an∈R
m

• A can be thought of as representing a linear mapping f from Rn to Rm, Rn →→→→→→→→→→→→→→
A
R

m

f :Rn→Rm, A = [ f(e1) f(e2) ... f(en) ], In∈R
n×n, In = [ e1 e2 ... en ]

• Column space, C(A) = {b∈Rm| ∃x∈Rn such that b = Ax}⊆Rm, the part of Rm reachable by linear
combination of columns of A

• Left null space, N(AT)= {y ∈Rm|AT y =0}⊆Rm, the part of Rm not reachable by linear combination
of columns of A

• Row space, R(A) = C(AT) = {c∈Rn| ∃y ∈Rm such that c = AT y}⊆Rn, the part of Rn reachable by
linear combination of rows of A

• Null space, N(A) = {x∈Rn|Ax = 0}⊆Rn, the part of Rn not reachable by linear combination of rows
of A



Linear dependence and independence: motivating examples 3/15

• Zero product property of scalar multiplication: ax= 0⇒ a= 0 or x =0

• Matrix-vector counterexamples of zero product property

− A= [ a1 a2 ] =

[

1 1
2 2

]

,Ax =

[

1 1
2 2

][

1
−1

]

=

[

0
0

]

=0

− B = [ b1 b2 b3 ] =





1 −1 1
2 0 4
3 1 7



, Bx =





1 −1 1
2 0 4
3 1 7









2
1
−1



=





0
0
0



=0

• Matrix-vector example satisfying the zero product property Ix = 0⇒x =0

• Question: how to distinguish between above examples?

• Note:

− a1 = a2

− b3 = 2b1 + b2
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Definition. The vectors a1,a2, ...,an∈V , are linearly dependent if there exist n scalars, x1, ..., xn∈S, at least
one of which is different from zero such that

x1a1 + ...xnan =0

Note that {0}, with 0∈V is a linearly dependent set of vectors since 1 ·0=0.

The converse of linear dependence is linear independence, a member of the set cannot be expressed as a non-
trivial linear combination of the other vectors

Definition. The vectors a1,a2, ...,an∈V ,are linearly independent if the only n scalars, x1, ...,xn∈S, that satisfy

x1a1 + ...xnan =0, (1)

are x1 =0, x2 = 0,...,xn = 0.

The choice x = ( x1 ... xn )T = 0 that always satisfies (1) is called a trivial solution. We can restate linear

independence as (1) being satisfied only by the trivial solution.



Relationship between linear dependence and null space 5/15

Recall:

Definition. The null space of a matrix A∈Rm×n is the set

N(A) = null(A) = {x∈Rn|Ax =0}≤Rn (2)

• If N(A) = {0} then the column vectors of A are linearly independent, since the only way to satisfy (1) is
by the trivial solution x =0

Definition. The left null space of a matrix A∈Rm×n is the set

N(AT) = null(AT) = {y ∈Rm|ATy =0}≤Rn (3)

• If N(AT) = {0} then the row vectors of A are linearly independent, since the only way to satisfy (1) is by
the trivial solution x =0
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Definition. The column vectors u1, u2, ...,un∈R
m of matrix U ∈Rm×n are orthogonal if

UTU = diag(‖u1‖
2, ..., ‖un‖

2).

Definition. The column vectors q1, q2, ..., qn∈R
m of matrix Q∈Rm×n are orthonormal if

QTQ = I .

Definition. The matrix Q∈Rm×m is orthogonal if

QTQ= QQT = I .

Example. The reflection matrix across direction q, ‖q‖= 1 in Rm,Rq = 2qqT − I , is orthogonal

Rq Rq
T = (2qqT − I)(2qqT − I)T = (2qqT − I)(2qqT − I) = 4qqTqqT − 4qqT − I = I

since qqTqqT = q (qTq) qT = q (1) qT = q qT .
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Suppose in V = (V ,R, +, ·) the set B = {a1, a2, ...} spans V , V = spanB. Adding another vector does not
change the span spanB= span (B∪{b}). Intuitively B∪{b} contains a redundant vector, it is not a minimal
spanning set. Avoid redundancy by defining minimal spanning sets.

Definition. A set of vectors u1, ..., un∈V is a basis for vector space V if:

1. u1, ..., un are linearly independent;

2. span{u1, ..., un}=V.

Adding another vector b∈ leads to a linearly dependent set {u1, ...,un, b}.

Definition. The number of vectors u1, ..., un∈V within a basis is the dimension of the vector space V.



Matrix subspace dimensions 8/15

• C(A) the column space of A, C(A)≤Rm

• C(AT) the row space of A, C(AT)≤Rn

• N(A) the null space of A, N (A)≤Rn

• N(AT) the left null space of A, or null space of AT , N (AT)≤Rm.

The dimensions of these subspaces arise so often in applications to warrant formal definition.

Definition. The rank of a matrix A∈Rm×n is the dimension of its column space.

Definition. The nullity of a matrix A∈Rm×n is the dimension of its null space.

Dimension of column space equals dimension of row space

b= Ax = x1 a1 + ···+ xn an⇔ bT = (Ax)T = xT AT = x1 a1
T + ···+ xn an

T .



A realistic example: ECG storage and analysis 9/15

∴ using MAT

∴ DataFileName = homedir()*"/courses/MATH347DS/data/ecg/ECGData.mat";

∴ DataFile = matopen(DataFileName,"r");

∴ dict = read(DataFile,"ECGData");

∴ data = dict["Data"]’;

∴ size(data)

∴ q=12; m=2^q; k=15; b=data[1:m,k];

∴ figure(1); clf(); plot(b); title("Electrocardiogram");

∴ cd(homedir()*"/courses/MATH347DS/images"); savefig("S04Fig01.eps");

∴
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A realistic example: ECG storage and analysis 9/15

∴ using MAT

∴ DataFileName = homedir()*"/courses/MATH347DS/data/ecg/ECGData.mat";

∴ DataFile = matopen(DataFileName,"r");

∴ dict = read(DataFile,"ECGData");

∴ data = dict["Data"]’;

∴ size(data)

[

65536

162

]

(4)

∴ q=12; m=2^q; k=15; b=data[1:m,k];

∴ figure(1); clf(); plot(b); title("Electrocardiogram");

∴ cd(homedir()*"/courses/MATH347DS/images"); savefig("S04Fig01.eps");

∴
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Exterior product construction of I 10/15

• Consider m = 2q, denote Iq the identity matrix of size m×m = 2q × 2q

I0 = [1], I1 =

[

1 0
0 1

]

.

I2 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









=

[

I1 0

0 I1

]

=

[

1 · I1 0 · I1

0 · I1 1 · I1

]

, I3 =

[

1 · I2 0 · I2

0 · I2 1 · I2

]

.

Definition. The exterior product of matrices A= [aij]∈R
m×n and B ∈Rp×q is the matrix C ∈R(mp)×(nq)

C = A⊗B =









a11B a12 B ... a1n B

a21 B a21 B ... a2n B
···

···
···

···
am1 B am2B ... amn B









.

• I2 = I1⊗ I1, I3 = I1⊗ I2



Hadamard matrices 11/15

• Choose a differnt set of starting matrices and obtain another sequence Hq ∈R
m×m, m =2q

H0 = [1], H1 =

[

1 1
1 −1

]

, Hq =H1⊗Hq−1.

∴ using Hadamard

∴ H2=hadamard(2^2)

∴ H2=hadamard(2^3)



Hadamard matrices 11/15

• Choose a differnt set of starting matrices and obtain another sequence Hq ∈R
m×m, m =2q

H0 = [1], H1 =

[

1 1
1 −1

]

, Hq =H1⊗Hq−1.

∴ using Hadamard

∴ H2=hadamard(2^2)









1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1









(5)

∴ H2=hadamard(2^3)



Hadamard matrices 11/15

• Choose a differnt set of starting matrices and obtain another sequence Hq ∈R
m×m, m =2q

H0 = [1], H1 =

[

1 1
1 −1

]

, Hq =H1⊗Hq−1.

∴ using Hadamard

∴ H2=hadamard(2^2)









1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1









(6)

∴ H2=hadamard(2^3)

























1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

























(7)



Matrix structure visualization 12/15

• The pattern of components in Hq less discernable than that in Iq

• Visualize the non-zero elements in matrices

∴ q=5; m=2^q; Iq=Matrix(1.0I,m,m); Hq=hadamard(m);

∴ clf(); subplot(1,2,1); spy(Iq); subplot(1,2,2); spy(Hq.+1);

∴ cd(homedir()*"/courses/MATH347DS/images"); savefig("S03Fig02.eps");

∴
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Figure 1. Structures of I5, H5



Column vectors of I, H 13/15
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Figure 2. Comparison of column vectors of I ,H.

Vectors of I sample one moment in time, vectors of H sample multiple moments



First attempt at ECG compression 14/15

• Idea: drop some of the terms in the linear combinations. Instead of

b = Ib= b1 e1 + ···+ bm em = c1 h1 + ···+ cm hm = Hc

define

u = b1 e1 + ···+ bn en, v = c1 h1 + ···+ cn hn

∴ q=12; m=2^q; k=15; b=data[1:m,k];

∴ Iq=Matrix(1.0I,m,m); Hq=hadamard(m); c=(1/m)*transpose(Hq)*b;

∴ n=2^10; u=Iq[:,1:n]*b[1:n]; v=Hq[:,1:n]*c[1:n];

∴ figure(2); clf(); subplot(3,1,1); plot(b);

∴ subplot(3,1,2); plot(u);

∴ subplot(3,1,3); plot(v);

∴ cd(homedir()*"/courses/MATH347DS/images"); savefig("S04Fig03.eps");

∴



Results of first attempt at ECG compression 15/15
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Figure 3. Top: original ECG, Middle: Truncation in I-basis, Bottom: Truncation in H-basis
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