

Overview

- Linear dependence and independence
- Orthogonal, orthonormal vector sets
- Orthogonal matrices
- Basis, dimension
- Realistic application of vector operations framework: ECG representation and compression
 - Sampling
 - Recursive definition of \boldsymbol{I}
 - Hadamard-Walsh matrices
 - Compression by truncation of linear combinations.

• Let $A \in \mathbb{R}^{m \times n}$ be a matrix with n column vectors, each with m components

$$A = [a_1 \ a_2 \ ... \ a_n], a_1, a_2, ..., a_n \in \mathbb{R}^m$$

ullet A can be thought of as representing a linear mapping f from \mathbb{R}^n to \mathbb{R}^m , $\mathbb{R}^n \overset{A}{\longrightarrow} \mathbb{R}^m$

$$oldsymbol{f} : \mathbb{R}^n o \mathbb{R}^m, oldsymbol{A} = [oldsymbol{f}(oldsymbol{e}_1) \ oldsymbol{f}(oldsymbol{e}_2) \ \dots \ oldsymbol{f}(oldsymbol{e}_n) \], oldsymbol{I}_n \in \mathbb{R}^{n imes n}, oldsymbol{I}_n = [oldsymbol{e}_1 \ oldsymbol{e}_2 \ \dots \ oldsymbol{e}_n \]$$

- Column space, $C(A) = \{b \in \mathbb{R}^m | \exists x \in \mathbb{R}^n \text{ such that } b = Ax\} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m reachable by linear combination of columns of A
- Left null space, $N(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{R}^m | \mathbf{A}^T \mathbf{y} = 0 \} \subseteq \mathbb{R}^m$, the part of \mathbb{R}^m not reachable by linear combination of columns of \mathbf{A}
- Row space, $R(A) = C(A^T) = \{c \in \mathbb{R}^n | \exists y \in \mathbb{R}^m \text{ such that } c = A^T y\} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^n reachable by linear combination of rows of A
- Null space, $N(A) = \{x \in \mathbb{R}^n | Ax = 0\} \subseteq \mathbb{R}^n$, the part of \mathbb{R}^n not reachable by linear combination of rows of A

- Zero product property of scalar multiplication: $ax = 0 \Rightarrow a = 0$ or x = 0
- Matrix-vector counterexamples of zero product property

$$- A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}, Ax = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \mathbf{0}$$

$$egin{aligned} - & m{B} = [m{b}_1 \ m{b}_2 \ m{b}_3] = egin{bmatrix} 1 & -1 & 1 \ 2 & 0 & 4 \ 3 & 1 & 7 \end{bmatrix}, m{B}m{x} = egin{bmatrix} 1 & -1 & 1 \ 2 & 0 & 4 \ 3 & 1 & 7 \end{bmatrix} egin{bmatrix} 2 \ 1 \ -1 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} = m{0} \end{aligned}$$

- Matrix-vector example satisfying the zero product property $Ix = 0 \Rightarrow x = 0$
- Question: how to distinguish between above examples?
- Note:
 - $a_1 = a_2$
 - $b_3 = 2b_1 + b_2$

Definition. The vectors $a_1, a_2, ..., a_n \in \mathcal{V}$, are linearly dependent if there exist n scalars, $x_1, ..., x_n \in \mathcal{S}$, at least one of which is different from zero such that

$$x_1\boldsymbol{a}_1 + \dots x_n\boldsymbol{a}_n = \boldsymbol{0}$$

Note that $\{0\}$, with $0 \in \mathcal{V}$ is a linearly dependent set of vectors since $1 \cdot 0 = 0$.

The converse of linear dependence is linear independence, a member of the set cannot be expressed as a non-trivial linear combination of the other vectors

Definition. The vectors $a_1, a_2, ..., a_n \in \mathcal{V}$, are linearly independent if the only n scalars, $x_1, ..., x_n \in \mathcal{S}$, that satisfy

$$x_1 \boldsymbol{a}_1 + \dots x_n \boldsymbol{a}_n = \mathbf{0},\tag{1}$$

are $x_1 = 0$, $x_2 = 0$,..., $x_n = 0$.

The choice $x = (x_1 \dots x_n)^T = 0$ that always satisfies (1) is called a *trivial solution*. We can restate linear independence as (1) being satisfied *only* by the trivial solution.

Recall:

Definition. The null space of a matrix $A \in \mathbb{R}^{m \times n}$ is the set

$$N(\mathbf{A}) = \text{null}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{A} \mathbf{x} = \mathbf{0} \} \le \mathbb{R}^n$$
(2)

• If $N(A) = \{0\}$ then the column vectors of A are linearly independent, since the only way to satisfy (1) is by the trivial solution x = 0

Definition. The left null space of a matrix $A \in \mathbb{R}^{m \times n}$ is the set

$$N(\mathbf{A}^T) = \text{null}(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{R}^m | \mathbf{A}^T \mathbf{y} = \mathbf{0} \} \le \mathbb{R}^n$$
(3)

• If $N(A^T) = \{0\}$ then the row vectors of A are linearly independent, since the only way to satisfy (1) is by the trivial solution x = 0

Definition. The column vectors $u_1, u_2, ..., u_n \in \mathbb{R}^m$ of matrix $U \in \mathbb{R}^{m \times n}$ are orthogonal if

$$U^TU = \text{diag}(\|u_1\|^2, ..., \|u_n\|^2).$$

Definition. The column vectors $q_1, q_2, ..., q_n \in \mathbb{R}^m$ of matrix $Q \in \mathbb{R}^{m \times n}$ are orthonormal if

$$Q^TQ = I$$
.

Definition. The matrix $Q \in \mathbb{R}^{m \times m}$ is orthogonal if

$$Q^TQ = QQ^T = I.$$

Example. The reflection matrix across direction q, $\|q\| = 1$ in \mathbb{R}^m , $R_q = 2 q q^T - I$, is orthogonal

$$R_{q}R_{q}^{T} = (2qq^{T} - I)(2qq^{T} - I)^{T} = (2qq^{T} - I)(2qq^{T} - I) = 4qq^{T}qq^{T} - 4qq^{T} - I = I$$

since $qq^{T}qq^{T} = q(q^{T}q)q^{T} = q(1)q^{T} = qq^{T}$.

Suppose in $\mathcal{V} = (V, \mathbb{R}, +, \cdot)$ the set $\mathcal{B} = \{a_1, a_2, ...\}$ spans $V, V = \operatorname{span} \mathcal{B}$. Adding another vector does not change the span $\operatorname{span} \mathcal{B} = \operatorname{span} (\mathcal{B} \cup \{b\})$. Intuitively $\mathcal{B} \cup \{b\}$ contains a redundant vector, it is not a minimal spanning set. Avoid redundancy by defining minimal spanning sets.

Definition. A set of vectors $u_1, ..., u_n \in V$ is a basis for vector space V if:

- 1. $u_1, ..., u_n$ are linearly independent;
- 2. span $\{u_1, ..., u_n\} = V$.

Adding another vector $b \in$ leads to a linearly dependent set $\{u_1, ..., u_n, b\}$.

Definition. The number of vectors $u_1, ..., u_n \in V$ within a basis is the dimension of the vector space V.

- ullet $C(oldsymbol{A})$ the column space of $oldsymbol{A}$, $C(oldsymbol{A}) \leq \mathbb{R}^m$
- $C(\mathbf{A}^T)$ the row space of \mathbf{A} , $C(\mathbf{A}^T) \leq \mathbb{R}^n$
- $N(\mathbf{A})$ the null space of \mathbf{A} , $N(\mathbf{A}) \leq \mathbb{R}^n$
- $N(\mathbf{A}^T)$ the left null space of \mathbf{A} , or null space of \mathbf{A}^T , $N(\mathbf{A}^T) \leq \mathbb{R}^m$.

The dimensions of these subspaces arise so often in applications to warrant formal definition.

Definition. The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of its column space.

Definition. The nullity of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of its null space.

Dimension of column space equals dimension of row space

$$\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x} = x_1 \boldsymbol{a}_1 + \dots + x_n \boldsymbol{a}_n \Leftrightarrow \boldsymbol{b}^T = (\boldsymbol{A}\boldsymbol{x})^T = \boldsymbol{x}^T \boldsymbol{A}^T = x_1 \boldsymbol{a}_1^T + \dots + x_n \boldsymbol{a}_n^T.$$


```
.: using MAT
.: DataFileName = homedir()*"/courses/MATH347DS/data/ecg/ECGData.mat";
.: DataFile = matopen(DataFileName,"r");
.: dict = read(DataFile,"ECGData");
.: data = dict["Data"]';
.: size(data)
.: q=12; m=2^q; k=15; b=data[1:m,k];
.: figure(1); clf(); plot(b); title("Electrocardiogram");
.: cd(homedir()*"/courses/MATH347DS/images"); savefig("S04Fig01.eps");
.:
```


...

.: cd(homedir()*"/courses/MATH347DS/images"); savefig("S04Fig01.eps");

• Consider $m=2^q$, denote ${\it I}_q$ the identity matrix of size $m imes m=2^q imes 2^q$

$$I_0 = [1], I_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

$$I_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} I_1 & \mathbf{0} \\ \mathbf{0} & I_1 \end{bmatrix} = \begin{bmatrix} 1 \cdot I_1 & 0 \cdot I_1 \\ 0 \cdot I_1 & 1 \cdot I_1 \end{bmatrix}, I_3 = \begin{bmatrix} 1 \cdot I_2 & 0 \cdot I_2 \\ 0 \cdot I_2 & 1 \cdot I_2 \end{bmatrix}.$$

Definition. The exterior product of matrices $A = [a_{ij}] \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ is the matrix $C \in \mathbb{R}^{(mp) \times (nq)}$

$$m{C} = m{A} \otimes m{B} = \left[egin{array}{cccc} a_{11} m{B} & a_{12} m{B} & ... & a_{1n} m{B} \ a_{21} m{B} & a_{21} m{B} & ... & a_{2n} m{B} \ dots & dots & dots & dots & dots \ a_{m1} m{B} & a_{m2} m{B} & ... & a_{mn} m{B} \end{array}
ight].$$

• $I_2 = I_1 \otimes I_1, I_3 = I_1 \otimes I_2$

ullet Choose a differnt set of starting matrices and obtain another sequence $m{H}_q \in \mathbb{R}^{m imes m}$, $m = 2^q$

$$H_0 = [1], H_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, H_q = H_1 \otimes H_{q-1}.$$

- : using Hadamard
- : H2=hadamard(2^2)
- : H2=hadamard(2^3)

• Choose a differnt set of starting matrices and obtain another sequence $\boldsymbol{H}_q \in \mathbb{R}^{m \times m}$, $m = 2^q$

$$H_0 = [1], H_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, H_q = H_1 \otimes H_{q-1}.$$

- .. using Hadamard
- : H2=hadamard(2^2)

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{bmatrix}$$
(5)

: H2=hadamard(2^3)

• Choose a differnt set of starting matrices and obtain another sequence $m{H}_q \in \mathbb{R}^{m \times m}$, $m = 2^q$

$$m{H}_0 = [1], m{H}_1 = \left[egin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}
ight], m{H}_q = m{H}_1 \otimes m{H}_{q-1}.$$

- .. using Hadamard
- : H2=hadamard(2^2)

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{bmatrix}$$
(6)

: H2=hadamard(2^3)

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1
\end{bmatrix}$$
(7)

- ullet The pattern of components in $oldsymbol{H}_q$ less discernable than that in $oldsymbol{I}_q$
- Visualize the non-zero elements in matrices

```
.: q=5; m=2^q; Iq=Matrix(1.0I,m,m); Hq=hadamard(m);
.: clf(); subplot(1,2,1); spy(Iq); subplot(1,2,2); spy(Hq.+1);
.: cd(homedir()*"/courses/MATH347DS/images"); savefig("S03Fig02.eps");
.:
```


Figure 1. Structures of I_5 , H_5

Figure 2. Comparison of column vectors of $\boldsymbol{I}, \boldsymbol{H}$.

Vectors of $oldsymbol{I}$ sample one moment in time, vectors of $oldsymbol{H}$ sample multiple moments

• Idea: drop some of the terms in the linear combinations. Instead of

$$b = Ib = b_1 e_1 + \dots + b_m e_m = c_1 h_1 + \dots + c_m h_m = Hc$$

define

$$\boldsymbol{u} = b_1 \, \boldsymbol{e}_1 + \dots + b_n \, \boldsymbol{e}_n, \, \boldsymbol{v} = c_1 \, \boldsymbol{h}_1 + \dots + c_n \, \boldsymbol{h}_n$$

```
.: q=12; m=2^q; k=15; b=data[1:m,k];
.: Iq=Matrix(1.0I,m,m); Hq=hadamard(m); c=(1/m)*transpose(Hq)*b;
.: n=2^10; u=Iq[:,1:n]*b[1:n]; v=Hq[:,1:n]*c[1:n];
.: figure(2); clf(); subplot(3,1,1); plot(b);
.: subplot(3,1,2); plot(u);
.: subplot(3,1,3); plot(v);
.: cd(homedir()*"/courses/MATH347DS/images"); savefig("S04Fig03.eps");
.:
```


Figure 3. Top: original ECG, Middle: Truncation in I-basis, Bottom: Truncation in H-basis