1 2 3 4 5 6 7 8 9

Lemma 1. Let \mathcal{U}, \mathcal{V} , be subspaces of vector space \mathcal{W} . Then $\mathcal{W} = \mathcal{U} \oplus \mathcal{V}$ if and only if

i.
$$W = U + V$$
, and

ii.
$$\mathcal{U} \cap \mathcal{V} = \{0\}$$
.

Proof. $W = \mathcal{U} \oplus \mathcal{V} \Rightarrow \mathcal{W} = \mathcal{U} + \mathcal{V}$ by definition of direct sum, sum of vector subspaces. To prove that $W = \mathcal{U} \oplus \mathcal{V} \Rightarrow \mathcal{U} \cap \mathcal{V} = \{\mathbf{0}\}$, consider $\mathbf{w} \in \mathcal{U} \cap \mathcal{V}$. Since $\mathbf{w} \in \mathcal{U}$ and $\mathbf{w} \in \mathcal{V}$ write

$$w = w + 0 \ (w \in \mathcal{U}, 0 \in \mathcal{V}), \ w = 0 + w \ (0 \in \mathcal{U}, w \in \mathcal{V}),$$

and since expression w=u+v is unique, it results that w=0. Now assume (i),(ii) and establish an unique decomposition. Assume there might be two decompositions of $w\in \mathcal{W}$, $w=u_1+v_1$, $w=u_2+v_2$, with $u_1,u_2\in \mathcal{U}$, $v_1,v_2\in \mathcal{V}$. Obtain $u_1+v_1=u_2+v_2$, or $x=u_1-u_2=v_2-v_1$. Since $x\in \mathcal{U}$ and $x\in \mathcal{V}$ it results that x=0, and $u_1=u_2$, $v_1=v_2$, i.e., the decomposition is unique.