

Overview

- The singular value decomposition (SVD)
 - Motivation
 - Theorem
- Another essential diagram: SVD finds orthonormal bases for $C(\boldsymbol{A}), N(\boldsymbol{A}^T), C(\boldsymbol{A}^T), N(\boldsymbol{A})$
- SVD computation
- Rank-1 expansion of a matrix
- Matrix norm
- SVD in image compression, analysis
- The pseudo-inverse

- Motivation: FTLA does not specify bases for $C({\bf A}), N({\bf A}^T), C({\bf A}^T), N({\bf A})$.
- Question: Is there some "natural" basis for the fundamental matrix subspaces?
- Consider linear mapping: $f: \mathbb{R}^n \to \mathbb{R}^m$, f(x) = Ax, $A \in \mathbb{R}^{m \times n}$
 - $-\,\,$ The input $oldsymbol{x}$ is given in the identity matrix basis, $oldsymbol{x} = oldsymbol{I}_n \, oldsymbol{x}$
 - The output $m{b}=m{f}(m{x})=m{A}\,m{x}$ is also obtained in the identity matrix basis, $m{y}=m{I}_m\,m{y}$
 - In these basis the effect of A might be costly to compute

$$b = x_1 a_1 + x_2 a_2 + \dots + x_n a_n \Rightarrow b_i = x_1 a_{i1} + x_2 a_{i2} + \dots + x_n a_{i,n}.$$

What would be simpler? One possibility: a simple scaling of each component suggested by

$$\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \boldsymbol{D}\boldsymbol{x} = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_m) \boldsymbol{x} = \begin{bmatrix} \lambda_1 & 0 & ... & 0 \\ 0 & \lambda_2 & ... & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & ... & \lambda_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \Rightarrow b_i = \lambda_i x_i$$

- Seek different bases for domain, codomain of $f: \mathbb{R}^n \to \mathbb{R}^m$, f(x) = Ax, $A \in \mathbb{R}^{m \times n}$
 - an orthonormal basis $m{V}$ in \mathbb{R}^n , $m{V} \in \mathbb{R}^{n imes n}$, $m{V} m{V}^T = m{V}^T m{V} = m{I}_n$

$$Ix = Vy \Rightarrow y = V^Tx$$

- an orthonormal basis $m{U}$ in \mathbb{R}^m , $m{U}$ \in $\mathbb{R}^{m imes m}$, $m{U}m{U}^T$ = $m{U}^Tm{U}$ = $m{I}_m$

$$Ib = Uc \Rightarrow c = U^Tb$$

- impose that the effect of A in the new bases is a simple component scaling

$$oldsymbol{c} = oldsymbol{\Sigma} \, oldsymbol{y} \Rightarrow oldsymbol{U}^T oldsymbol{b} = oldsymbol{\Sigma} \, oldsymbol{V}^T oldsymbol{x} \Rightarrow oldsymbol{b} = oldsymbol{U} \, oldsymbol{\Sigma} \, oldsymbol{V}^T oldsymbol{x} \Rightarrow$$

$$A = U \Sigma V^T$$

- Note that $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$

Theorem. (SVD) For any $A \in \mathbb{R}^{m \times n}$, $A = U \Sigma V^T$, with $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ orthogonal, $\Sigma \in \mathbb{R}_+^{m \times n}$ pseudo-diagonal $\Sigma = \operatorname{diag}(\sigma_1, ..., \sigma_r, ..., 0)$, $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$, $r \leqslant \min(m, n)$

The SVD is determined by eigendecomposition of A^TA , and AA^T

- $A^TA = (U\Sigma V^T)^T (U\Sigma V^T) = V (\Sigma^T\Sigma) V^T$, an eigendecomposition of A^TA . The columns of V are eigenvectors of A^TA and called *right singular vectors* of A
- $AA^T = (U\Sigma V^T)(U\Sigma^T V^T)^T = U(\Sigma\Sigma^T)U^T$, an eigendecomposition of AA^T . The columns of U are eigenvectors of AA^T and called *left singular vectors* of A
- The matrix Σ has zero elements except for the diagonal that contains σ_i , the singular values of A, computed as the square roots of the eigenvalues of A^TA (or AA^T)

• SVD of $A \in \mathbb{R}^{m \times n}$ reveals: rank(A), bases for $C(A), N(A^T), C(A^T), N(A)$

- From $A = U\Sigma V^T$ deduce $AA^T = U\Sigma^2 U^T$, $A^TA = V\Sigma^2 V^T$, hence U is the eigenvector matrix of AA^T , and V is the eigenvector matrix of A^TA
- SVD computation is available in Julia, Octave, Matlab, Mathematica ...

```
.: short(x) = round(x,digits=6);

.: A=[2 -1; -3 1]; F=svd(A); U=F.U; Σ=Diagonal(F.S); Vt=F.Vt; short.([A U*Σ*Vt])

.: short.([U Σ Vt'])

.:
```

 $\bullet \ \ \mathsf{SVD} \ \mathsf{of} \ \boldsymbol{A} = \left[\begin{array}{cc} 2 & -1 \\ 3 & 1 \end{array} \right] \, \mathsf{diagram}, \ \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{A} \, \boldsymbol{x}$

- From $A = U\Sigma V^T$ deduce $AA^T = U\Sigma^2 U^T$, $A^TA = V\Sigma^2 V^T$, hence U is the eigenvector matrix of AA^T , and V is the eigenvector matrix of A^TA
- SVD computation is available in Julia, Octave, Matlab, Mathematica ...

```
∴ short(x) = round(x,digits=6);

∴ A=[2 -1; -3 1]; F=svd(A); U=F.U; Σ=Diagonal(F.S); Vt=F.Vt; short.([A U*Σ*Vt])
```

$$\begin{bmatrix}
2.0 & -1.0 & 2.0 & -1.0 \\
-3.0 & 1.0 & -3.0 & 1.0
\end{bmatrix}$$
(1)

```
∴ short.([U Σ Vt'])
∴
```

• SVD of $m{A} = \left[\begin{array}{cc} 2 & -1 \\ 3 & 1 \end{array} \right]$ diagram, $m{f}(m{x}) = m{A} \, m{x}$

- From $A = U\Sigma V^T$ deduce $AA^T = U\Sigma^2U^T$, $A^TA = V\Sigma^2V^T$, hence U is the eigenvector matrix of AA^T , and V is the eigenvector matrix of A^TA
- SVD computation is available in Julia, Octave, Matlab, Mathematica ...

```
∴ short(x) = round(x,digits=6);

∴ A=[2 -1; -3 1]; F=svd(A); U=F.U; Σ=Diagonal(F.S); Vt=F.Vt; short.([A U*Σ*Vt])
```

$$\begin{bmatrix}
2.0 & -1.0 & 2.0 & -1.0 \\
-3.0 & 1.0 & -3.0 & 1.0
\end{bmatrix}$$
(2)

∴ short.([U ∑ Vt'])

$$\begin{bmatrix} -0.576048 & 0.817416 & 3.864328 & 0.0 & -0.932722 & -0.360597 \\ 0.817416 & 0.576048 & 0.0 & 0.258777 & 0.360597 & -0.932722 \end{bmatrix}$$

$$(3)$$

٠.

• SVD of
$$m{A} = \left[egin{array}{cc} 2 & -1 \\ 3 & 1 \end{array} \right]$$
 diagram, $m{f}(m{x}) = m{A} \, m{x}$

ullet $oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T$, carry out block multiplication

- The above is known as a "rank-one" expansion since $\operatorname{rank}(\boldsymbol{u}_k\boldsymbol{v}_k^T)=1$. Note that $\boldsymbol{u}_k\boldsymbol{v}_k^T\in\mathbb{R}^{m\times n}$ and is a matrix whose columns are n scalings of \boldsymbol{u}_k
- SVD theorem: $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$, Often $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_k \gg \sigma_{k+1} \geqslant \cdots \geqslant \sigma_r > 0$

- ullet $oldsymbol{U},oldsymbol{V}$ specify intrinsic directions within $\mathbb{R}^m,\mathbb{R}^n$ along which $oldsymbol{A}$ acts as scaling transformation
- ullet Applying linear mapping to the $oldsymbol{v}_1$ vector, $oldsymbol{f}(oldsymbol{v}_1) = oldsymbol{A} \, oldsymbol{v}_1$

$$oldsymbol{A} oldsymbol{v}_1 = \left(\sum_{i=1}^p \ \sigma_i \, oldsymbol{u}_i oldsymbol{v}_i^T
ight) oldsymbol{v}_1 = \sum_{i=1}^p \ \sigma_i \, oldsymbol{u}_i (oldsymbol{v}_i^T oldsymbol{v}_1) = \sigma_1 \, oldsymbol{u}_1$$

- ullet Direction most amplified by $m{f}(m{x}) = m{A}\,m{x}$ is $m{v}_1$ and the result is the vector $\sigma_1\,m{u}_1$
- Define a matrix norm as the largest amplification factor

$$\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2.$$

• The largest singular value σ_1 is the matrix 2-norm

$$\sigma_1 = \max_{\|x\|_2 = 1} \|Ax\|_2.$$

Full SVD

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T, r \leqslant \min(m, n).$$

Truncated SVD

$$oldsymbol{A}\!\cong\!oldsymbol{A}_p\!=\!\sum_{i=1}^p\;\sigma_ioldsymbol{u}_ioldsymbol{v}_i^T.$$

Many applications, e.g., image compression

Figure 1. Successive SVD approximations of Andy Warhol's painting, Marilyn Diptych (~1960), with k = 10, 20, 40 rankone updates.

- Consider $x_1, x_2 : \mathbb{R} \to \mathbb{R}$, data streams in time of inputs $x_1(t)$ and outputs $x_2(t)$
- Is there some function f linking outputs to inputs? $f(x_1(t)) = x_2(t)$
- Seek answer by first asking: is x_2 correlated to x_1 ?
- Introduce mean values

$$\mu_1 \cong \bar{x}_1 = \frac{1}{N} \sum_{i=1}^{N} x_1(t_i) = E[x_1], \ \mu_2 \cong \bar{x}_2 = \frac{1}{N} \sum_{i=1}^{N} x_2(t_i) = E[x_2].$$

• E is the expectation, a linear mapping, $E: \mathbb{R}^N \to \mathbb{R}$ whose associated matrix is

$$E = \frac{1}{N} [1 \ 1 \ \dots \ 1].$$

• Shift data such that $\bar{x}_1 = \bar{x}_2 = 0$. Define correlation coefficient

$$\rho(x_1, x_2) = \frac{E[x_1 x_2]}{\sigma_1 \sigma_2} = \frac{E[x_1 x_2]}{\sqrt{E[x_1^2] E[x_2^2]}} = \frac{\boldsymbol{x}_1^T \boldsymbol{x}_2}{\|\boldsymbol{x}_1\| \|\boldsymbol{x}_2\|}.$$

• uncorrelated, if $\rho = 0$; correlated, if $\rho = 1$; anti-correlated, if $\rho = -1$.

Correlated signals

```
.: t=0:0.01:1; x1=1.0*t; x2=t.^2; rho=transpose(x1)*x2/norm(x1)/norm(x2)
.:
```

• Uncorrelated signals

```
.: m=size(x1)[1]; x3=2*(rand(m,1).-0.5)[:,1]; rho=transpose(x1)*x3/norm(x1)/norm(x3)
.:
```

Anticorrelated signals

```
\therefore x4=-t.^2; rho=transpose(x1)*x4/norm(x1)/norm(x4)
```


Correlated signals

```
∴ t=0:0.01:1; x1=1.0*t; x2=t.^2; rho=transpose(x1)*x2/norm(x1)/norm(x2)
0.968249831385581
∴
```

• Uncorrelated signals

```
... m=size(x1)[1]; x3=2*(rand(m,1).-0.5)[:,1]; rho=transpose(x1)*x3/norm(x1)/norm(x3)
...
```

Anticorrelated signals

```
\therefore x4=-t.^2; rho=transpose(x1)*x4/norm(x1)/norm(x4)
```


Correlated signals

```
∴ t=0:0.01:1; x1=1.0*t; x2=t.^2; rho=transpose(x1)*x2/norm(x1)/norm(x2)

0.968249831385581

∴
```

• Uncorrelated signals

```
∴ m=size(x1)[1]; x3=2*(rand(m,1).-0.5)[:,1]; rho=transpose(x1)*x3/norm(x1)/norm(x3)
0.040354121344516436
∴
```

Anticorrelated signals

```
\therefore x4=-t.^2; rho=transpose(x1)*x4/norm(x1)/norm(x4)
```

- ullet Are input and output parameters $oldsymbol{x} \in \mathbb{R}^n$, $oldsymbol{y} \in \mathbb{R}^m$ well chosen?
- Perhaps components are redundant, a more economical description might be

$$\boldsymbol{u} \in \mathbb{R}^q, \boldsymbol{v} \in \mathbb{R}^p, p < m, q < n$$

ullet Extend idea from correlation coefficient: take N measurements

- Choose origin such that E[x] = 0, E[y] = 0.
- Covariance matrix (generalization of single variable variance)

$$egin{aligned} oldsymbol{C_X} = oldsymbol{X}^T oldsymbol{X} = \begin{bmatrix} oldsymbol{x}_1^T \ oldsymbol{x}_2^T \ oldsymbol{x}_1 \end{bmatrix} egin{aligned} oldsymbol{x}_1 & oldsymbol{x}_2 & \dots & oldsymbol{x}_n \end{bmatrix} = egin{bmatrix} oldsymbol{x}_1^T oldsymbol{x}_1 & oldsymbol{x}_1^T oldsymbol{x}_2 & \dots & oldsymbol{x}_1^T oldsymbol{x}_n \\ oldsymbol{x}_1^T oldsymbol{x}_1 & oldsymbol{x}_2^T oldsymbol{x}_2 & \dots & oldsymbol{x}_1^T oldsymbol{x}_n \\ oldsymbol{x}_1^T oldsymbol{x}_1 & oldsymbol{x}_1^T oldsymbol{x}_2 & \dots & oldsymbol{x}_1^T oldsymbol{x}_n \\ oldsymbol{x}_1^T oldsymbol{x}_1 & oldsymbol{x}_1^T oldsymbol{x}_2 & \dots & oldsymbol{x}_1^T oldsymbol{x}_n \\ oldsymbol{x}_1^T oldsymbol{x}_1 & oldsymbol{x}_1^T oldsymbol{x}_2 & \dots & oldsymbol{x}_1^T oldsymbol{x}_n \\ oldsymbol{x}_1^T oldsymbol{x}_1 & oldsymbol{x}_1^T oldsymbol{x}_2 & \dots & oldsymbol{x}_1^T oldsymbol{x}_n \end{bmatrix}$$

- SVDs: $\boldsymbol{X} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T$, $C_{\boldsymbol{X}} = \boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^T$, $\boldsymbol{\Lambda} = \boldsymbol{\Sigma}^T \boldsymbol{\Sigma}$

$$oldsymbol{x} = oldsymbol{V}_q oldsymbol{u} = \left[egin{array}{ccc} oldsymbol{v}_1 & oldsymbol{v}_2 & \dots & oldsymbol{v}_q \end{array}
ight] oldsymbol{u}.$$

- ullet System description in terms of $oldsymbol{u} \in \mathbb{R}^q$ is more economical than that in terms of $oldsymbol{x} \in \mathbb{R}^n$
- In image compression, successive pixel columns are correlated and reduced descriptions are possible

- Consider linear system Ax = b, $A \in \mathbb{R}^{m \times m}$, rank(A) = m. SVD solution steps:
- 1. Compute the SVD, $U \Sigma V^T = A$;
- 2. Find the coordinates of \boldsymbol{b} in the orthogonal basis \boldsymbol{U} , $\boldsymbol{c} = \boldsymbol{U}^T \boldsymbol{b}$;
- 3. Scale the coordinates of c by the inverse of the singular values $y_i = c_i / \sigma_i$, i = 1, ..., m, such that $\Sigma y = c$ is satisfied;
- 4. Find the coordinates of y in basis V^T , x = Vy.
- What if $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A) = r < m$. If $b \in C(A)$ above procedure still works with a simple modification of step 3 with i going now from 1 to r
- 1. $U\Sigma V^T = A$;
- 2. $c = U^T b$;
- 3. $y_i = c_i / \sigma_i$, i = 1, ..., r
- 4. x = Vy.
- If $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A) = r < m$. If $b \notin C(A)$, the above steps give the best approximation of b by linear combination of columns of A in the 2-norm

ullet Since the steps to solve a linear system or find best approximation are identical define a matrix A^+ that carries out all steps:

$$(\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T)\boldsymbol{x} = \boldsymbol{b} \Leftrightarrow \boldsymbol{U}(\boldsymbol{\Sigma}\boldsymbol{V}^T\boldsymbol{x}) = \boldsymbol{b}$$

$$(\Sigma V^T x) = U^T b \Leftrightarrow \Sigma (V^T x) = U^T b$$

• Recall $\Sigma = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_r, 0, ...0)$. Define $\Sigma^+ = \text{diag}(1/\sigma_1, 1/\sigma_2, ..., 1/\sigma_r, 0, ...0)$

$$V^T x = \Sigma^+ U^T b$$

$$x = V \Sigma^+ U^T b$$

- Gather all above steps into a single matrix $A^+ = V \Sigma^+ U^T$ called the *pseudo-inverse* of A.
- The solution then to a linear system (either exact solution of best approximation) is

$$x = A^+ b$$

• In Julia, Matlab, Octave, above procedure is implemented through $x=A \setminus b$.