MATH347DS L06: The singular value decomposition

Overview

e The singular value decomposition (SVD)
— Motivation
— Theorem
e Another essential diagram: SVD finds orthonormal bases for C(A), N(AT),C(AT), N(A)
e SVD computation
e Rank-1 expansion of a matrix
e Matrix norm
e SVD in image compression, analysis

e The pseudo-inverse



e Motivation: FTLA does not specify bases for C(A), N(AT),C(AT), N(A).
e Question: Is there some “natural”’ basis for the fundamental matrix subspaces?
e Consider linear mapping: f: R"—R"™, f(x)=Ax, AcR"™*"

— The input « is given in the identity matrix basis, x = 1I,,

— In these basis the effect of A might be costly to compute

Motivation singular value decomposition (SVD)
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— The output b= f(x) = Az is also obtained in the identity matrix basis, y=1,,y

b:x1a1+x2a2+ +xnan:>bi:a:1ai1+x2ai2+ +a:nai,n.

— What would be simpler? One possibility: a simple scaling of each component suggested by



Stating desired behavior

e Seck different bases for domain, codomain of f:R"™ —R™, f(x)=Ax, Ac R™*"
— an orthonormal basis V in R*, Ve R"*", VWI=vITv =1,

Ic=Vy=y=V'x
— an orthonormal basis U in R™, U e R™*™ UUT=UTU =1,
Ib=Uc=c=U"b
— impose that the effect of A in the new bases is a simple component scaling
c=Sy=U"b=3SViz=b=UXViz=

A=UXV7T

— Note that X e R™m*"



Can it be done? Yes: Singular value decomposition theorem

Theorem. (SVD) For any Ac R"™*", A=UX V7T, with U € R™*™, V € R"*" orthogonal, > € R <"
pseudo-diagonal 3 = diag(oy,....,0.,...,0), 01 =09 > - >0, >0, r <min (m,n)

The SVD is determined by eigendecomposition of ATA, and A A”

e ATA=(UZVHT(UZVT)=V (213 ) VT, an eigendecomposition of ATA. The columns of V are
eigenvectors of AT A and called right singular vectors of A

o AAT=(UZVHUSZTVHT=U (ZXT)U7T, an eigendecomposition of AA”. The columns of U are
eigenvectors of A A” and called left singular vectors of A

e The matrix X2 has zero elements except for the diagonal that contains o;, the singular values of A, computed
as the square roots of the eigenvalues of ATA (or AAT)



An all-encompassing diagram: SVD and matrix subspaces

e SVD of A€ R™*" reveals: rank(A), bases for C(A), N(AT),C(AT), N(A)
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SVD Computation 6/15

e From A=UXV7T deduce AAT=UX?UT ATA=V X2V, hence U is the eigenvector matrix of
A AT and V is the eigenvector matrix of ATA

e SVD computation is available in Julia, Octave, Matlab, Mathematica ...

. short(x) = round(x,digits=6);
. A=[2 -1; -3 1]; F=svd(A); U=F.U; I=Diagonal(F.S); Vt=F.Vt; short.([A UxIxVt])

. short.([U X Vt’])

2 —1

° SVD01:14:[3 1

] diagram, f(x)=Ax
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SVD Computation 6/15

e From A=UXV7T deduce AAT=UX?UT ATA=V X2V, hence U is the eigenvector matrix of
A AT and V is the eigenvector matrix of ATA

e SVD computation is available in Julia, Octave, Matlab, Mathematica ...
. short(x) = round(x,digits=6);
. A=[2 -1; -3 1]; F=svd(A); U=F.U; I=Diagonal(F.S); Vt=F.Vt; short.([A UxIxVt])
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SVD Computation 6/15

e From A=UXV7T deduce AAT=UX?UT ATA=V X2V, hence U is the eigenvector matrix of
A AT and V is the eigenvector matrix of ATA

e SVD computation is available in Julia, Octave, Matlab, Mathematica ...

. short(x) = round(x,digits=6);
. A=[2 -1; -3 1]; F=svd(A); U=F.U; I=Diagonal(F.S); Vt=F.Vt; short.([A UxIxVt])

20 -1.0 20 -1.0

-30 1.0 —-3.0 1.0 (2)
. short.([U £ Vt’])
—0.576048 0.817416 3.864328 0.0 —0.932722 —0.360597 (3)
0.817416 0.576048 0.0 0.258777 0.360597 —0.932722

2 —1

° SVD01:14:[3 1

] diagram, f(x)=Ax
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Additive decomposition of A

e A=UXVT carry out block multiplication

S
_ - v1
01 .
T
,v’l"
A:[ul cee u?ﬂ uT+1 eee Um] O-r T j
0 Ur41
L - vg’:‘
011
o, vk T T
A=[uy ... Up Upyq ... Uy | 07’ | =o1uvi + ...+ oy,
0

e The above is known as a “rank-one” expansion since rank(u,v/)=1. Note that uv) € R"™*" and is a
matrix whose columns are n scalings of wu;

e SVD theorem: 01 >09>--->0,>0, Often o1 >09> - 20> 011> >0,.>0



Matrix 2-norm

e U,V specify intrinsic directions within R”*,IR" along which A acts as scaling transformation

e Applying linear mapping to the vy vector, f(vi)=Awv;

p p
§ : T E : T
A’l)1 = O; UW;V; U1 = o; ’U,Z'(’Ui ’Ul) =01U1
1=1

1=1

e Direction most amplified by f(x)= Ax is v; and the result is the vector o u4

e Define a matrix norm as the largest amplification factor

|Alz= max [[Az].

[][2=1
e The largest singular value o7 is the matrix 2-norm

oc1= max ||Azx|.
| |l2=1



Low-rank matrix approximation

e Full SVD
A:Z o;u;vl v <min (m,n).
i=1
e Truncated SVD

P
_E T
AgAp— o; W;v; .

1=1

e Many applications, e.g., image compression

Figure 1. Successive SVD approximations of Andy Warhol's painting, Marilyn Diptych (71960), with k= 10, 20, 40 rank-
one updates.



Why does SVD image compression work?

Consider =1, ro: R — R, data streams in time of inputs x1(t) and outputs z2(%)
Is there some function f linking outputs to inputs? f(xz1(t))=x2(t)
Seek answer by first asking: is x5 correlated to x1?

Introduce mean values

|I2

N
Z xy(t [z1], 2252:%\[2 xo(t;)
i=1

E is the expectation, a linear mapping, F:IR"Y — R whose associated matrix is

1
E=— .
N[ 11 1]
Shift data such that 1 = 5= 0. Define correlation coefficient
P(SUl 5132) _ E[:L’liL’Q] _ E[:L’liL’Q] _ CL'I{CL'Q
’ o102 \JE@RAE[z3 el [lx

uncorrelated, if p=20; correlated, if p=1; anti-correlated, if p=—1.




Examples

e Correlated signals

. t=0:0.01:1; x1=1.0%t; x2=t.~2; rho=transpose(x1)*x2/norm(x1)/norm(x2)

e Uncorrelated signals

. m=size(x1) [1]; x3=2*(rand(m,1).-0.5)[:,1]; rho=transpose(x1)*x3/norm(x1)/norm(x3)

e Anticorrelated signals

. x4=-t.~2; rho=transpose(x1)*x4/norm(x1)/norm(x4)




Examples

e Correlated signals

. t=0:0.01:1; x1=1.0%t; x2=t.~2; rho=transpose(x1)*x2/norm(x1)/norm(x2)
0.968249831385581

e Uncorrelated signals

. m=size(x1) [1]; x3=2*(rand(m,1).-0.5)[:,1]; rho=transpose(x1)*x3/norm(x1)/norm(x3)

e Anticorrelated signals

. x4=-t.~2; rho=transpose(x1)*x4/norm(x1)/norm(x4)




Examples

e Correlated signals

. t=0:0.01:1; x1=1.0%t; x2=t.~2; rho=transpose(x1)*x2/norm(x1)/norm(x2)
0.968249831385581

e Uncorrelated signals

. m=size(x1) [1]; x3=2*(rand(m,1).-0.5)[:,1]; rho=transpose(x1)*x3/norm(x1)/norm(x3)
0.040354121344516436

e Anticorrelated signals

.. x4=-t.72; rho=transpose(x1)*x4/norm(x1) /norm(x4)




Cx=XTX=

Extend correlation to input, output vectors

Are input and output parameters x € R"”, y € R well chosen?

Extend idea from correlation coefficient: take N measurements

Xz[zcl Iro

Choose origin such that E|x| =0, E[y| =0.

Covariance matrix (generalization of single variable variance)

ucRI,veRP, p<m,qg<n

x, |ERN*" Y =y y

o1 Lo
[331502 2.1 2.2

Iy, I

Perhaps components are redundant, a more economical description might be

y, | € RN *™,

xiae, ofaxy ... xf

L1 Lp
T CBgCBn
T T




Reduced description by truncation of covariance matrix SVD

SVDs: X =UXVT Cx=XTX=VAVT, A=3TX

[ ]
e Take first ¢ column vectors of V/, V(;:[ V] ... Vg ] q<n
cc:‘/;]u:[ V] V2 ... Uy }u
e System description in terms of u € R? is more economical than that in terms of x € R"

e In image compression, successive pixel columns are correlated and reduced descriptions are possible
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SVD solution of linear algebra problems: linear systems, least squares

Consider linear system Ax =b, Ac R™*"™, rank(A)=m. SVD solution steps:

. Compute the SVD, UX VT = A;

Find the coordinates of b in the orthogonal basis U, ¢=U"b;

. Scale the coordinates of ¢ by the inverse of the singular values y;=c¢; /0;, i=1,...,m, such that Yy =cis
satisfied;

. Find the coordinates of y in basis V7, = = V.

What if A€ R™*", rank(A)=r <m. If be C(A) above procedure still works with a simple modification
of step 3 with 7 going now from 1 to r

USVT=A;
c=UTb;
yi=ci/oq, i=1,...,7
. x=Vy.

If AcR™*" rank(A)=r<m. If b¢ C(A), the above steps give the best approximation of b by linear
combination of columns of A in the 2-norm



Pseudo-inverse matrix

Since the steps to solve a linear system or find best approximation are identical define a matrix A™ that
carries out all steps:

USVD z=boU((EVTiz)=b
(SVT2)=UTbe S (Vie)=UTb
Recall X =diag(oy, 09, ...,0,,0,...0). Define ¥+t =diag(1/0y,1/09,...,1/0,,0,...0)
VIie=3+tU"b
x=VXtU"b

Gather all above steps into a single matrix AT =V X1t U7 called the pseudo-inverse of A.

The solution then to a linear system (either exact solution of best approximation) is
r=A"b

In Julia, Matlab, Octave, above procedure is implemented through x=A\b.
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