Overview

- ullet Gram-Schmidt algorithm, QR factorization
- Projection onto subspaces
- Orthogonal projectors
- Best approximation in the 2-norm
- Linear regression
- Polynomial approximation
- Polynomial interpolation

Definition. The Dirac delta symbol δ_{ij} is defined as

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Definition. A set of vectors $\{u_1,...,u_n\}$ is said to be orthonormal if

$$\boldsymbol{u}_i^T \boldsymbol{u}_j = \delta_{ij}$$

• The column vectors of the identity matrix are orthonormal

$$I = (e_1 \dots e_m)$$

$$\boldsymbol{e}_i^T \boldsymbol{e}_j = \delta_{ij}$$

- An arbitrary vector set can be transformed into an orthonormal set by the Gram-Schmidt algorithm
- Idea:
 - Start with an arbitrary direction a_1
 - Divide by its norm to obtain a unit-norm vector $oldsymbol{q}_1 = oldsymbol{a}_1 / \|oldsymbol{a}_1\|$
 - Choose another direction a_2
 - Subtract off its component along previous direction(s) $\boldsymbol{a}_2 (\boldsymbol{q}_1^T \boldsymbol{a}_2) \boldsymbol{q}_1$
 - Divide by norm $q_2 = (a_2 (q_1^T a_2) q_1) / \|a_2 (q_1^T a_2) q_1\|$
 - Repeat the above

• Consider $A \in \mathbb{R}^{m \times n}$ with linearly independent columns. By linear combinations of the columns of A a set of orthonormal vectors $q_1, ..., q_n$ will be obtained. This can be expressed as a matrix product

with $Q \in \mathbb{R}^{m \times n}$, $R \in \mathbb{R}^{n \times n}$. The matrix R is upper-triangular (also referred to as right-triangular) since to find vector q_1 only vector a_1 is used, to find vector q_2 only vectors a_1 , a_2 are used

The above is equivalent to the system

$$\begin{cases} a_1 = r_{11}q_1 \\ a_2 = r_{12}q_1 + r_{22}q_2 \\ \vdots \\ a_n = r_{1n}q_1 + r_{2n}q_2 + ... + r_{nn}q_n \end{cases}$$

- The system can be solved to find $oldsymbol{R}, oldsymbol{Q}$ by:
 - 1 Imposing $\|q_1\| = 1 \Rightarrow r_{11} = \|a_1\|$, $q_1 = a_1/r_{11}$
 - 2 Computing projections of $a_2,...,a_n$ along q_1

$$r_{12} = \boldsymbol{q}_1^T \boldsymbol{a}_2, ..., r_{1n} = \boldsymbol{q}_1^T \boldsymbol{a}_n$$

3 Subtracting components along q_1 from $a_2,...,a_n$

$$\begin{cases} a_2 - r_{12}q_1 = r_{22}q_2 \\ \vdots \\ a_n - r_{1n}q_1 = r_{2n}q_2 + \dots + r_{nn}q_n \end{cases}$$

4 The above steps reduced the size of the system by 1. Repeating the steps completes the solution. The overall process is known as the Gram-Schmidt algorithm

Algorithm (Gram-Schmidt)

```
Given n vectors \boldsymbol{a}_1,...,\boldsymbol{a}_n \in \mathbb{R}^m

Initialize \boldsymbol{q}_1 = \boldsymbol{a}_1,...,\boldsymbol{q}_n = \boldsymbol{a}_n, \boldsymbol{R} = \boldsymbol{I}_n \in \mathbb{R}^{n \times n}

for i=1 to n

r_{ii} = (\boldsymbol{q}_i^T \boldsymbol{q}_i)^{1/2}; \boldsymbol{q}_i = \boldsymbol{q}_i/r_{ii}

for j=i+1 to n

r_{ij} = \boldsymbol{q}_i^T \boldsymbol{a}_j; \boldsymbol{q}_j = \boldsymbol{q}_j - r_{ij}\boldsymbol{q}_i

end

end

return \boldsymbol{Q}, \boldsymbol{R}
```

• For $A \in \mathbb{R}^{m \times n}$ with linearly independent columns, the Gram-Schmidt algorithm furnishes a factorization

$$QR = A$$

with $Q \in \mathbb{R}^{m \times n}$ with orthonormal columns and $R \in \mathbb{R}^{n \times n}$ an upper triangular matrix.

ullet Since the column vectors within Q were obtained through linear combinations of the column vectors of A we have

$$C(\boldsymbol{A}) = C(\boldsymbol{Q})$$

ullet Consider a vector $oldsymbol{u} \in \mathbb{R}^m$, and a unit-norm vector $oldsymbol{q}_1 \! \in \! \mathbb{R}^m$

Definition. The orthogonal projection of $u \in \mathbb{R}^m$ along direction $q_1 \in \mathbb{R}^m$, $||q_1|| = 1$ is the vector $(q_1^T u)q_1$.

- Scalar-vector multiplication commutativity: $(\boldsymbol{q}_1^T\boldsymbol{u})\boldsymbol{q}_1 = \boldsymbol{q}_1(\boldsymbol{q}_1^T\boldsymbol{u})$
- Matrix multiplication associativity: $q_1(q_1^Tu) = (q_1q_1^T)u = P_1u$, with $P_1 \in \mathbb{R}^{m \times m}$

Definition. The matrix $P_1 = q_1 q_1^T \in \mathbb{R}^{m \times m}$ is the orthogonal projector along direction $q_1 \in \mathbb{R}^m$, $\|q_1\| = 1$.

ullet Consider n orthonormal vectors grouped into a matrix $oldsymbol{Q} = (oldsymbol{q}_1 \; ... \; oldsymbol{q}_n) \in \mathbb{R}^{m imes n}$

ullet The orthogonal projection of $oldsymbol{u}$ onto the subspace spanned by $oldsymbol{q}_1,...,oldsymbol{q}_n$ is

$$Pu = P_1u + ... + P_nu = (q_1q_1^T)u + ... + (q_nq_n^T)u \Rightarrow$$

$$oldsymbol{P} = oldsymbol{q}_1 oldsymbol{q}_1^T + ... + oldsymbol{q}_n oldsymbol{q}_n^T = (egin{array}{ccc} oldsymbol{q}_1 & ... & oldsymbol{q}_n \end{array}) egin{pmatrix} oldsymbol{q}_1^T \ dots \ oldsymbol{q}_n^T \end{pmatrix} = oldsymbol{Q} oldsymbol{Q}^T \ oldsymbol{q}_n^T \end{pmatrix}$$

Definition. The orthogonal projector onto C(Q), $Q \in \mathbb{R}^{m \times n}$ with orthonormal column vectors is $P = QQ^T$

ullet Given $m{u} \in \mathbb{R}^m$ and $m{Q} = (m{q}_1 \ ... \ m{q}_n \) \in \mathbb{R}^{m imes n}$ with orthonormal columns

Definition. The complementary orthogonal projector to $P = QQ^T$ is I - P, where $Q \in \mathbb{R}^{m \times n}$ is a matrix with orthonormal columns.

ullet The complementary orthogonal projector projects a vector onto the left null space, $N(oldsymbol{Q}^T)$

- Consider the linear system Ax = b with $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. Orthogonal projectors and knowledge of the four fundamental matrix subspaces allows us to succintly express whether there exist no solutions, a single solution of an infinite number of solutions:
 - Consider the factorization QR = A, the orthogonal projector $P = QQ^T$, and the complementary orthogonal projector I P
 - If $\|(I-P)b\| \neq 0$, then b has a component outside the column space of A, and Ax = b has no solution
 - If ||(I P)b|| = 0, then $b \in C(Q) = C(A)$ and the system has at least one solution
 - If $N(A) = \{0\}$ (null space only contains the zero vector, i.e., null space of dimension 0) the system has a unique solution
 - If dim $N(\mathbf{A}) = n r > 0$, then a vector $\mathbf{y} \in N(\mathbf{A})$ in the null space is written as

$$\mathbf{y} = c_1 \mathbf{z}_1 + \dots + c_{n-r} \mathbf{z}_{n-r}$$

and if x is a solution of Ax = b, so is x + y, since

$$A(x+y) = Ax + c_1Az_1 + ... + c_{n-r}Az_{n-r} = b + 0 + ... + 0 = b$$

The linear system has an (n-r)-parameter family of solutions

Figure 1. Least squares problem: find $v \in C(A)$, $A \in \mathbb{R}^{m \times n}$ closest to some given y in the 2-norm

- ullet Mathematical statement: solve the minimization problem $\min_{oldsymbol{c} \in \mathbb{R}^n} \|oldsymbol{y} oldsymbol{A} oldsymbol{c}\|$
- Approach: project y onto the column space of A:
 - 1 Find an orthonormal basis for column space of A by QR factorization, $QR\!=\!A$
 - 2 State that $m{v}$ is the projection of $m{y}$, $m{v} = m{P}_{C(m{A})} m{y} = m{P}_{m{Q}} m{y} = m{Q} m{Q}^T m{y}$
 - 3 State that v is within the column space of A, v = Ac = QRc
 - 4 Set equal the two expressions of v, $QQ^Ty = QRc \Rightarrow Rc = Q^Ty$
 - 5 Solve the triangular system to find c (in Julia, Matlab, Octave: $c=R\setminus(Q,y)$)

- In many scientific fields the problem of determining the straight line $y(x) = c_0 + c_1 x$, that best approximate data $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$ arises. The problem is to find the coefficients c_0, c_1 , and this is referred to as the linear regression problem.
- ullet The calculus approach: Form sum of squared differences between $y(x_i)$ and y_i

$$S(c_0, c_1) = \sum_{i=1}^{m} (y(x_i) - y_i)^2 = \sum_{i=1}^{m} (c_0 + c_1 x_i - y_i)^2$$

and seek (c_0, c_1) that minimize $S(c_0, c_1)$ by solving the equations

$$\frac{\partial S}{\partial c_0} = 0 \Rightarrow 2\sum_{i=1}^m (c_0 + c_1 x_i - y_i) = 0 \Leftrightarrow m c_0 + \left(\sum_{i=1}^m x_i\right) c_1 = \sum_{i=1}^m y_i$$

$$\frac{\partial S}{\partial c_1} = 0 \Rightarrow 2\sum_{i=1}^m (c_0 + c_1 x_i - y_i) x_i = 0 \Leftrightarrow \left(\sum_{i=1}^m x_i\right) c_0 + \left(\sum_{i=1}^m x_i^2\right) c_1 = \sum_{i=1}^m x_i y_i$$

• Form a vector of errors with components $e_i = y(x_i) - x_i$. Recognize that $y(x_i)$ is a linear combination of 1 and x_i with coefficients a_0, a_1 , or in vector form

$$oldsymbol{e} = \left[egin{array}{ccc} 1 & x_1 \ dots & dots \ 1 & x_m \end{array}
ight] \left[egin{array}{ccc} c_0 \ c_1 \end{array}
ight] - oldsymbol{y} = \left[egin{array}{ccc} oldsymbol{1} & oldsymbol{x} \end{array}
ight] oldsymbol{c} - oldsymbol{y} = oldsymbol{A} oldsymbol{c} - oldsymbol{y} - oldsymbol{C} - oldsymbol{C} - oldsymbol{y} = oldsymbol{A} oldsymbol{c} - oldsymbol{C} - oldsymbol{C} - oldsymbol{C} - oldsymbol{A} - oldsymbol{C} - oldsymbol$$

• The norm of the error vector ||e|| is smallest when Ac is as close as possible to y. Since Ac is within the column space of C(A), $Ac \in C(A)$, the required condition is for e to be orthogonal to the column space, leading to the normal equations

$$e \perp C(A) \Rightarrow A^T e = \begin{bmatrix} \mathbf{1}^T \\ \mathbf{x}^T \end{bmatrix} e = \begin{bmatrix} \mathbf{1}^T e \\ \mathbf{x}^T e \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \mathbf{0}$$

$$A^T e = 0 \Leftrightarrow A^T (A c - y) = 0 \Leftrightarrow (A^T A) c = A^T y$$
 (Normal equations)

• If QR = A is known, preferable to solve $QQ^Ty = QRc \Rightarrow Rc = Q^Ty$.

1 Generate some data on a line and perturb it by some random quantities

```
∴ m=100; x=(0:m-1)./m; c0=2; c1=3; yex=c0.+c1*x; y=(yex.+rand(m,1).-0.5);
∴
```

2 Form the Q,R matrices, QR = A, (qr(A,0))

```
... A=ones(m,2); A[:,2]=x[:]; QR=qr(A); Q=QR.Q[:,1:2]; R=QR.R[1:2,1:2];
...
```

3 Solve the system $\boldsymbol{R} \boldsymbol{x} = \boldsymbol{Q}^T \boldsymbol{y}$

```
∴ c = R\(transpose(Q)*y)
```

4 Form the linear combination v = Ax closest to b

```
.. v=A*c;
..
```

1 Generate some data on a line and perturb it by some random quantities

```
.. m=100; x=(0:m-1)./m; c0=2; c1=3; yex=c0.+c1*x; y=(yex.+rand(m,1).-0.5);
..
```

2 Form the Q,R matrices, QR = A, (qr(A,0))

```
... A=ones(m,2); A[:,2]=x[:]; QR=qr(A); Q=QR.Q[:,1:2]; R=QR.R[1:2,1:2];
...
```

3 Solve the system $\boldsymbol{R} \boldsymbol{x} = \boldsymbol{Q}^T \boldsymbol{y}$

```
\therefore c = R \setminus (transpose(Q)*y)
\begin{bmatrix} 1.9812089298039193 \\ 2.9758677046339135 \end{bmatrix}
(1)
```

4 Form the linear combination v = Ax closest to b

```
∴ v=A*c;
∴
```

• Plot the perturbed data (black dots), the result of the linear regression (green circles), as well as the line used to generate yex (red line)

```
∴ plot(x,y,".k",x,v,"og",x,yex,"r"); title("Linear_regression"); xlabel("x");
  ylabel("y,v,yex");
∴ cd(homedir()*"/Desktop/courses/MATH347DS/images"); savefig("L07Fig02.eps");
∴
```


Figure 2. Linear regression through least squares result

The calculus approach becomes complex for higher-degree approximation

$$y(x) = c_0 + c_1 x + c_2 x^2 = \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = A(x) \mathbf{c}.$$

Note that y(x) is nonlinear.

• The least squares approach retains its simplicity since but $y(c_0,c_1,c_2)$ is linear.

```
.: m=100; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+c1*x.+c2*x.^2;
.: y=(yex.+rand(m,1).-0.5);
.: A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];
.: c = R\(transpose(Q)*y)
.: v=A*c;
.:
```

• The calculus approach becomes complex for higher-degree approximation

$$y(x) = c_0 + c_1 x + c_2 x^2 = \begin{bmatrix} 1 & x & x^2 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = A(x) \mathbf{c}.$$

Note that y(x) is nonlinear.

• The least squares approach retains its simplicity since but $y(c_0, c_1, c_2)$ is linear.

```
.: m=100; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+c1*x.+c2*x.^2;
.: y=(yex.+rand(m,1).-0.5);
.: A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];
.: c = R\((transpose(Q)*y))
```

$$\begin{bmatrix}
2.019352129655483 \\
2.8933875491171213 \\
-4.773241628594068
\end{bmatrix}$$
(2)

```
∴ v=A*c;
∴
```

• Plot the perturbed data (black dots), the result of the linear regression (green circles), as well as the line used to generate yex (red line)

```
∴ plot(x,y,".k",x,v,"og",x,yex,"r"); title("Quadratic_regression"); xlabel("x");
  ylabel("y,v,yex");
∴ cd(homedir()*"/Desktop/courses/MATH347DS/images"); savefig("L07Fig03.eps");
∴
```


Figure 3. Linear regression through least squares result

Definition. The polynomial interpolant of data $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$ with $x_i \neq x_j$ if $i \neq j$ is a polynomial of degree m-1

$$p_{m-1}(x) = c_0 + c_1 x + \dots + c_{m-1} x^{m-1}$$

that satisfies the conditions $p_{m-1}(x_i) = y_i$, i = 1, ..., m.

ullet We can apply the same approach. In this particular case, the error e can be made zero.

```
.. m=3; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+c1*x.+c2*x.^2;

.. A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];

.. c=R\setminus(transpose(Q)*yex)
```

Note that the coefficients used to generate the data are recovered exactly.

Definition. The polynomial interpolant of data $\mathcal{D} = \{(x_i, y_i), i = 1, ..., m\}$ with $x_i \neq x_j$ if $i \neq j$ is a polynomial of degree m-1

$$p_{m-1}(x) = c_0 + c_1 x + \dots + c_{m-1} x^{m-1}$$

that satisfies the conditions $p_{m-1}(x_i) = y_i$, i = 1, ..., m.

We can apply the same approach. In this particular case, the error e can be made zero.

```
m=3; x=(0:m-1)./m; c0=2; c1=3; c2=-5; y=c0.+c1*x.+c2*x.^2;
\therefore A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];
\therefore c = R\(transpose(Q)*yex)
```

$$\begin{bmatrix}
2.0 \\
2.99999999999997 \\
-4.9999999999999
\end{bmatrix}$$
(3)

Note that the coefficients used to generate the data are recovered exactly.