
MATH347DS L07: Least squares 1/19

Overview

� Gram-Schmidt algorithm, QR factorization

� Projection onto subspaces

� Orthogonal projectors

� Best approximation in the 2-norm

� Linear regression

� Polynomial approximation

� Polynomial interpolation

Orthonormal vector sets 2/19

Definition. The Dirac delta symbol �ij is defined as

�ij=
�
1 if i= j
0 if i=/ j

Definition. A set of vectors fu1; :::;ung is said to be orthonormal if

ui
Tuj= �ij

� The column vectors of the identity matrix are orthonormal

I =(e1 ::: em)

ei
T ej= �ij

Gram-Schmidt algorithm 3/19

� An arbitrary vector set can be transformed into an orthonormal set by the Gram-Schmidt
algorithm

� Idea:

¡ Start with an arbitrary direction a1

¡ Divide by its norm to obtain a unit-norm vector q1=a1/ka1k

¡ Choose another direction a2

¡ Subtract off its component along previous direction(s) a2¡ (q1Ta2)q1
¡ Divide by norm q2=(a2¡ (q1Ta2)q1)/ka2¡ (q1Ta2)q1k

¡ Repeat the above

a1

a2

q1

q2

a2¡ (q1Ta2)q1

Matrix formulation of Gram-Schmidt (QR factorization) 4/19

� Consider A 2Rm�n with linearly independent columns. By linear combinations of the
columns of A a set of orthonormal vectors q1; :::; qn will be obtained. This can be expressed
as a matrix product

A=(a1 a2 ::: an)= (q1 q2 ::: qn)

0BBBBBBBBBB@
r11 r12 r13 ::: r1n
0 r22 r23 ::: r2n
0 0 r33 ::: r3n
��� ��� ��� ��� ���
0 0 ::: ::: rmn

1CCCCCCCCCCA=QR

with Q2Rm�n, R2Rn�n. The matrix R is upper-triangular (also referred to as right-
triangular) since to find vector q1 only vector a1 is used, to find vector q2 only vectors a1;
a2 are used

� The above is equivalent to the system8>>>><>>>>:
a1= r11q1
a2= r12q1+ r22q2
���
an= r1nq1+ r2nq2+ :::+ rnnqn

Matrix formulation of Gram-Schmidt (QR factorization) 5/19

� The system can be solved to find R;Q by:

1 Imposing kq1k=1) r11= ka1k, q1= a1/r11

2 Computing projections of a2; :::;an along q1

r12= q1
Ta2; :::; r1n= q1

Tan

3 Subtracting components along q1 from a2; :::;an8<: a2¡ r12q1= r22q2
���
an¡ r1nq1= r2nq2+ :::+ rnnqn

4 The above steps reduced the size of the system by 1. Repeating the steps completes the
solution. The overall process is known as the Gram-Schmidt algorithm

Gram-Schmidt algorithm 6/19

Algorithm (Gram-Schmidt)

Given n vectors a1; :::;an2Rm

Initialize q1=a1,..,qn=an, R= In2Rn�n

for i=1 to n
rii=(qiT qi)1/2; qi= qi/rii
for j= i+1 to n
rij= qi

Taj; qj= qj¡ rijqi
end

end
return Q;R

QR factorization 7/19

� For A2Rm�n with linearly independent columns, the Gram-Schmidt algorithm furnishes a
factorization

QR=A

with Q2Rm�n with orthonormal columns and R2Rn�n an upper triangular matrix.

� Since the column vectors within Q were obtained through linear combinations of the column
vectors of A we have

C(A)=C(Q)

Orthogonal projection of a vector along another vector 8/19

� Consider a vector u2Rm, and a unit-norm vector q12Rm

u

q1
(q1Tu)q1

Definition. The orthogonal projection of u 2Rm along direction q12Rm, kq1k= 1 is the
vector (q1Tu)q1.

� Scalar-vector multiplication commutativity: (q1Tu)q1= q1(q1Tu)

� Matrix multiplication associativity: q1(q1Tu)= (q1q1T)u=P1u, with P12Rm�m

Definition. The matrix P1= q1q1T 2Rm�m is the orthogonal projector along direction q12Rm,
kq1k=1.

Orthogonal projection onto a subspace 9/19

� Consider n orthonormal vectors grouped into a matrix Q=(q1 ::: qn)2Rm�n

u

q1

q2

P1u

P2u P1u+P2u

� The orthogonal projection of u onto the subspace spanned by q1; :::; qn is

Pu=P1u+ :::+Pnu=(q1q1T)u+ :::+(qnqnT)u)

P = q1q1
T + :::+ qnqn

T =(q1 ::: qn)

0BB@ q1
T

���
qn
T

1CCA=QQT

Definition. The orthogonal projector onto C(Q), Q 2Rm�n with orthonormal column
vectors is P =QQT

Complementary orthogonal projector 10/19

� Given u2Rm and Q=(q1 ::: qn)2Rm�n with orthonormal columns

Definition. The complementary orthogonal projector to P =QQT is I ¡P, where Q2Rm�n

is a matrix with orthonormal columns.

� The complementary orthogonal projector projects a vector onto the left null space, N(QT)

Orthogonal projectors and linear systems 11/19

� Consider the linear systemAx=b withA2Rm�n, x2Rn, b2Rm. Orthogonal projectors
and knowledge of the four fundamental matrix subspaces allows us to succintly express
whether there exist no solutions, a single solution of an infinite number of solutions:

¡ Consider the factorization QR=A, the orthogonal projector P =QQT , and the com-
plementary orthogonal projector I ¡P

¡ If k(I ¡P)bk=/ 0, then b has a component outside the column space of A, and Ax=b
has no solution

¡ If k(I ¡P)bk=0, then b2C(Q)=C(A) and the system has at least one solution

¡ If N(A)=f0g (null space only contains the zero vector, i.e., null space of dimension 0)
the system has a unique solution

¡ If dimN(A)=n¡ r > 0, then a vector y 2N(A) in the null space is written as

y= c1z1+ :::+ cn¡rzn¡r

and if x is a solution of Ax= b, so is x+ y, since

A(x+ y)=Ax+ c1Az1+ :::+ cn¡rAzn¡r= b+0+ :::+0= b

The linear system has an (n¡ r)-parameter family of solutions

Best approximation in the 2-norm (least squares) 12/19

C(A)
y 2Rm

v 2Rm

Figure 1. Least squares problem: find v2C(A), A2Rm�n closest to some given y in the 2-norm

� Mathematical statement: solve the minimization problem minc2Rn ky¡Ack

� Approach: project y onto the column space of A:

1 Find an orthonormal basis for column space of A by QR factorization, QR=A

2 State that v is the projection of y, v=PC(A)y=PQy=QQTy

3 State that v is within the column space of A, v=Ac=QRc

4 Set equal the two expressions of v, QQTy=QRc)Rc=QTy

5 Solve the triangular system to find c (in Julia, Matlab, Octave: c=R\(Q'y))

Least squares: linear regression calculus approach 13/19

� In many scientific fields the problem of determining the straight line y(x)=c0+c1x, that best
approximate data D= f(xi; yi); i=1; :::;mg arises. The problem is to find the coefficients
c0; c1, and this is referred to as the linear regression problem.

� The calculus approach: Form sum of squared differences between y(xi) and yi

S(c0; c1)=
X
i=1

m

(y(xi)¡ yi)2=
X
i=1

m

(c0+ c1xi¡ yi)2

and seek (c0; c1) that minimize S(c0; c1) by solving the equations

@S

@c0
=0) 2

X
i=1

m

(c0+ c1xi¡ yi)= 0,mc0+

 X
i=1

m

xi

!
c1=

X
i=1

m

yi

@S

@c1
=0) 2

X
i=1

m

(c0+ c1xi¡ yi)xi=0,

 X
i=1

m

xi

!
c0+

 X
i=1

m

xi
2

!
c1=

X
i=1

m

xi yi

Geometry of linear regression: normal equations 14/19

� Form a vector of errors with components ei= y(xi)¡ xi. Recognize that y(xi) is a linear
combination of 1 and xi with coefficients a0; a1, or in vector form

e=

24 1 x1
��� ���
1 xm

35� c0
c1

�
¡ y= [1 x]c¡ y=Ac¡ y

� The norm of the error vector kek is smallest when Ac is as close as possible to y. Since
Ac is within the column space of C(A), Ac2C(A), the required condition is for e to be
orthogonal to the column space, leading to the normal equations

e?C(A))ATe=

"
1T

xT

#
e=

"
1Te
xTe

#
=
�
0
0

�
=0

ATe=0,AT(Ac¡ y)= 0, (ATA)c=ATy (Normal equations)

y

e
v=Ac C(A)

� If QR=A is known, preferable to solve QQTy=QRc)Rc=QTy.

Linear regression example 15/19

1 Generate some data on a line and perturb it by some random quantities

) m=100; x=(0:m-1)./m; c0=2; c1=3; yex=c0.+c1*x; y=(yex.+rand(m,1).-0.5);

)

2 Form the Q;R matrices, QR=A, (qr(A,0))

) A=ones(m,2); A[:,2]=x[:]; QR=qr(A); Q=QR.Q[:,1:2]; R=QR.R[1:2,1:2];

)

3 Solve the system Rx=QTy

) c = R\(transpose(Q)*y)

)

4 Form the linear combination v=Ax closest to b

) v=A*c;

)

Linear regression example 15/19

1 Generate some data on a line and perturb it by some random quantities

) m=100; x=(0:m-1)./m; c0=2; c1=3; yex=c0.+c1*x; y=(yex.+rand(m,1).-0.5);

)

2 Form the Q;R matrices, QR=A, (qr(A,0))

) A=ones(m,2); A[:,2]=x[:]; QR=qr(A); Q=QR.Q[:,1:2]; R=QR.R[1:2,1:2];

)

3 Solve the system Rx=QTy

) c = R\(transpose(Q)*y) �
1.9812089298039193
2.9758677046339135

�
(1)

)

4 Form the linear combination v=Ax closest to b

) v=A*c;

)

Linear regression result 16/19

� Plot the perturbed data (black dots), the result of the linear regression (green circles), as
well as the line used to generate yex (red line)

) plot(x,y,".k",x,v,"og",x,yex,"r"); title("Linear regression"); xlabel("x");
ylabel("y,v,yex");

) cd(homedir()*"/Desktop/courses/MATH347DS/images"); savefig("L07Fig02.eps");

)

0.0 0.2 0.4 0.6 0.8 1.0
x

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

y,
v,

ye
x

Linear regression

Figure 2. Linear reqression through least squares result

Quadratic regression 17/19

� The calculus approach becomes complex for higher-degree approximation

y(x)= c0+ c1x+ c2x
2=
�
1 x x2

�24 c0
c1
c2

35=A(x)c:

Note that y(x) is nonlinear.

� The least squares approach retains its simplicity since but y(c0; c1; c2) is linear.

) m=100; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+c1*x.+c2*x.^2;

) y=(yex.+rand(m,1).-0.5);

) A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];

) c = R\(transpose(Q)*y)

) v=A*c;

)

Quadratic regression 17/19

� The calculus approach becomes complex for higher-degree approximation

y(x)= c0+ c1x+ c2x
2=
�
1 x x2

�24 c0
c1
c2

35=A(x)c:

Note that y(x) is nonlinear.

� The least squares approach retains its simplicity since but y(c0; c1; c2) is linear.

) m=100; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+c1*x.+c2*x.^2;

) y=(yex.+rand(m,1).-0.5);

) A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];

) c = R\(transpose(Q)*y) 24 2.019352129655483
2.8933875491171213
¡4.773241628594068

35 (2)

) v=A*c;

)

Quadratic regression result 18/19

� Plot the perturbed data (black dots), the result of the linear regression (green circles), as
well as the line used to generate yex (red line)

) plot(x,y,".k",x,v,"og",x,yex,"r"); title("Quadratic regression"); xlabel("x");
ylabel("y,v,yex");

) cd(homedir()*"/Desktop/courses/MATH347DS/images"); savefig("L07Fig03.eps");

)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y,
v,

ye
x

Quadratic regression

Figure 3. Linear reqression through least squares result

The m=n case: polynomial interpolation 19/19

Definition. The polynomial interpolant of data D= f(xi; yi); i=1; :::;mg with xi=/ xj if i=/ j
is a polynomial of degree m¡ 1

pm¡1(x)= c0+ c1x+ :::+ cm¡1x
m¡1

that satisfies the conditions pm¡1(xi)= yi, i=1; :::;m.

� We can apply the same approach. In this particular case, the error e can be made zero.

) m=3; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+c1*x.+c2*x.^2;

) A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];

) c = R\(transpose(Q)*yex)

Note that the coefficients used to generate the data are recovered exactly.

The m=n case: polynomial interpolation 19/19

Definition. The polynomial interpolant of data D= f(xi; yi); i=1; :::;mg with xi=/ xj if i=/ j
is a polynomial of degree m¡ 1

pm¡1(x)= c0+ c1x+ :::+ cm¡1x
m¡1

that satisfies the conditions pm¡1(xi)= yi, i=1; :::;m.

� We can apply the same approach. In this particular case, the error e can be made zero.

) m=3; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+c1*x.+c2*x.^2;

) A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].^2; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];

) c = R\(transpose(Q)*yex) 24 2.0
2.9999999999999987
¡4.999999999999999

35 (3)

Note that the coefficients used to generate the data are recovered exactly.

	Overview

