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Orthonormal vector sets

Definition. The Dirac delta symbol 0;; is defined as

s 1ifi=j
U0 ifi g

Definition. A set of vectors {u1,...,u,} is said to be orthonormal if



Gram-Schmidt algorithm

An arbitrary vector set can be transformed into an orthonormal set by the Gram-Schmidt
algorithm

Idea:

— Start with an arbitrary direction a;

— Divide by its norm to obtain a unit-norm vector g; = a1/ ||a4]|

— Choose another direction a-

— Subtract off its component along previous direction(s) as — (gia2)q:

— Divide by norm g2 = (a3 — (qflpaz)ql)/ |az — (Q1T02)CI1H
— Repeat the above

as — (q{az)fh as

aq




Matrix formulation of Gram-Schmidt (Q R factorization)

e Consider A € R™*"™ with linearly independent columns. By linear combinations of the
columns of A a set of orthonormal vectors q;, ..., g,, will be obtained. This can be expressed
as a matrix product

(7“11 ri2 i3 ... Tin \
O 792 7123 ... T2,
A=(a; az .. an):(fh q2 ... Qn) 0 0 733 ... 13, |[=QR

\ 0 0 o T )
with Q e R™*", Re R"*"™. The matrix R is upper-triangular (also referred to as right-

triangular) since to find vector g; only vector a; is used, to find vector g only vectors aq,
a- are used

e The above is equivalent to the system

(
a; =riqa
< as =112q91 + 72292

L On = T1nq1 +T2ngq2 + ... T Tnndn



Matrix formulation of Gram-Schmidt (Q R factorization)

e The system can be solved to find R, Q) by:

1 Imposing ||qi||=1=7r11=|ai|l, gi=a1/r11

2 Computing projections of as, ..., a,, along g,

T T
ri2=4qi1a2,...,71n=(g1an

3 Subtracting components along g, from ao, ..., a,

as —ri12qi1 = 122492

Ap —T1nqg1 =72ng2 + ... + Tnndn

4 The above steps reduced the size of the system by 1. Repeating the steps completes the
solution. The overall process is known as the Gram-Schmidt algorithm



(E=)

Gram-Schmidt algorithm

Algorithm (Gram-Schmidt)

Given n vectors a1, ...,a, € R™
Initialize ¢1 = a1,..,q, = a,, R=1,cR"*"
fori=1ton

rio=(qi @)% qi=aqi/rii

for j=i+1ton

rij=ai a5 4= g5~ Ti;d;

end

end

return Q, R
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QQ R factorization

e For A€ R™*" with linearly independent columns, the Gram-Schmidt algorithm furnishes a
factorization

QR=A

with Q € R™*™ with orthonormal columns and R € IR™*™ an upper triangular matrix.
pPp g

e Since the column vectors within () were obtained through linear combinations of the column
vectors of A we have



Orthogonal projection of a vector along another vector

e Consider a vector u € IR™, and a unit-norm vector g; € R

Definition. The orthogonal projection of uw € R"™ along direction q; € R™,
vector (qiu)q.

|q1|| =1 is the
e Scalar-vector multiplication commutativity: (g{u)q; = q1(qiu)
e Matrix multiplication associativity: qi(g{u) = (q1qi )u = Pyu, with Py ¢ R™*"™

Definition. The matrix Py = qi1qi € R™*"™ is the orthogonal projector along direction q; € R™,
lqull=1.



Orthogonal projection onto a subspace

e Consider n orthonormal vectors grouped into a matrix Q=(q; ... g, )€ R™*"

P1u + PQ’U,
l
q2 \
> —
q1 Plu
e The orthogonal projection of u onto the subspace spanned by g, ..., g, is

Pu=Pu+..+Pu=(qql)u+..+(q.ql)u=

qi

PZqu{++an;€:(Q1 Qn) :QQT

qi

Definition. The orthogonal projector onto C(Q), Q € R™*™ with orthonormal column
vectors is P=Q Q"



Complementary orthogonal projector

e GivenuecR™and Q=(q; ... g, )€ R"™*" with orthonormal columns

Definition. The complementary orthogonal projector to P =Q Q" is I — P, where Q € R™*"
Is a matrix with orthonormal columns.

e The complementary orthogonal projector projects a vector onto the left null space, N (Q7)



Orthogonal projectors and linear systems

e Consider the linear system Ax=b with Ac R™*" xcR"™, beR"™. Orthogonal projectors
and knowledge of the four fundamental matrix subspaces allows us to succintly express
whether there exist no solutions, a single solution of an infinite number of solutions:

Consider the factorization Q R = A, the orthogonal projector P = Q Q" and the com-
plementary orthogonal projector I — P

If ||(I — P)b||#0, then b has a component outside the column space of A, and Ax="»
has no solution

If [|(L —P)b||=0, then be C(Q)=C(A) and the system has at least one solution

If N(A)={0} (null space only contains the zero vector, i.e., null space of dimension 0)
the system has a unique solution

If dim N(A)=mn —r >0, then a vector y € N(A) in the null space is written as
Y=ci1z1+t...+cn—rZn—r
and if x is a solution of Ax =0>b, so is x + y, since
Alx+y)=Ax+c1Az1+...+¢cp_ Az, »=b+0+...+0=0b

The linear system has an (n — r)-parameter family of solutions



Best approximation in the 2-norm (least squares)

veR™

Figure 1. Least squares problem: find v € C'(A), A€ R™*"™ closest to some given y in the 2-norm

e Mathematical statement: solve the minimization problem min.cg» ||y — Ac||
e Approach: project y onto the column space of A:
1 Find an orthonormal basis for column space of A by Q R factorization, Q R=A
2 State that v is the projection of y, v=Prayy=Poy=QQ"y
3 State that v is within the column space of A, v=Ac=Q Rc
4 Set equal the two expressions of v, QQ y=QRc= Rc=Q"y

5 Solve the triangular system to find ¢ (in Julia, Matlab, Octave: c=R\(Q’y))



Least squares: linear regression calculus approach

e In many scientific fields the problem of determining the straight line y(x) =co+ ¢z, that best
approximate data D = {(x;, y;),i=1,...,m} arises. The problem is to find the coefficients

co, ¢1, and this is referred to as the linear regression problem.

e The calculus approach: Form sum of squared differences between y(z;) and y;

(co+cr1m; — yi)2

Ms

m
C(),Cl — § .CC@ yz —

1=1 =1

and seek (co, ¢1) that minimize S(co, ¢1) by solving the equations



Geometry of linear regression: normal equations

e Form a vector of errors with components ¢; = y(z;) — x;. Recognize that y(x;) is a linear
combination of 1 and z; with coefficients ag, ay, or in vector form

Co

]—yz[l zle—y—Ac—y
C1

e The norm of the error vector ||e]| is smallest when Ac is as close as possible to y. Since
Ac is within the column space of C'(A), Ace C(A), the required condition is for e to be
orthogonal to the column space, leading to the normal equations

elC(A)= AT :[ 11;]6:[ Le ]:[ 8 ]:o

xr r e

Ale=0s AT(Ac—y)=0& (ATA)c= A’y (Normal equations)

Y
GL:AC C(A)

o If QR = A is known, preferable to solve QQ'y=QRc= Rc=Q"y.




Linear regression example

1 Generate some data on a line and perturb it by some random quantities

. m=100; x=(0:m-1)./m; c0=2; c1=3; yex=c0.+cl*x; y=(yex.+rand(m,1).-0.5);

2 Form the Q, R matrices, Q R= A, (qr(4,0))

.. A=ones(m,2); A[:,2]=x[:]; QR=qr(A); Q=QR.Q[:,1:2]; R=QR.R[1:2,1:2];

3 Solve the system Rz = Q"y

.. ¢ = R\ (transpose(Q) *y)

4  Form the linear combination v = A x closest to b

.. v=Axc;



Linear regression example

1 Generate some data on a line and perturb it by some random quantities

. m=100; x=(0:m-1)./m; c0=2; c1=3; yex=c0.+cl*x; y=(yex.+rand(m,1).-0.5);

2 Form the @, R matrices, QR= A, (qr(4,0))

.. A=ones(m,2); A[:,2]=x[:]; QR=qr(A); Q=QR.Q[:,1:2]; R=QR.R[1:2,1:2];

3 Solve the system Rx = Q'y

.. ¢ = R\ (transpose(Q) *y)

1.9812089298039193 (1)
2.9758677046339135

4  Form the linear combination v = A x closest to b

.. v=Axc;
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Linear regression result 16/19

e Plot the perturbed data (black dots), the result of the linear regression (green circles), as
well as the line used to generate yex (red line)

;. plot(x,y,".k",x,v,"og",x,yex,"r"); title("Linear regression"); xlabel("x");
ylabel("y,v,yex");

. cd(homedir () *"/Desktop/courses/MATH347DS/images") ; savefig("LO7Fig02.eps");

Linear regression
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Figure 2. Linear reqression through least squares result
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Quadratic regression 17/19

e The calculus approach becomes complex for higher-degree approximation

€o
yx)=cotcaz+cer’=1 z 22 || a |=A)c.
€2

Note that y(x) is nonlinear.

e The least squares approach retains its simplicity since but y(cg, c1, ¢2) is linear.

. m=100; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+cl*x.+c2*x."2;

. y=(yex.+rand(m,1) .-0.5);

.". A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:]1.72; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];
.. ¢ = R\ (transpose(Q) *y)

*. V=Ax*xc;
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Quadratic regression 17/19

e The calculus approach becomes complex for higher-degree approximation

€o
yx)=cotcaz+cer’=1 z 22 || a |=A)c.
€2

Note that y(x) is nonlinear.
e The least squares approach retains its simplicity since but y(cg, c1, ¢2) is linear.

. m=100; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+cl*x.+c2*x."2;
. y=(yex.+rand(m,1) .-0.5);
.". A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:]1.72; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];
.. ¢ = R\ (transpose(Q) *y)
2.019352129655483

2.8933875491171213 (2)
—4.773241628594068

.. v=Axc;
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Quadratic regression result 18/19

e Plot the perturbed data (black dots), the result of the linear regression (green circles), as
well as the line used to generate yex (red line)

;. plot(x,y,".k",x,v,"og",x,yex,"r"); title("Quadratic regression"); xlabel("x");
ylabel("y,v,yex");

. cd(homedir () *"/Desktop/courses/MATH347DS/images"); savefig("LO7Fig03.eps");

Quadratic regression
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Figure 3. Linear reqression through least squares result



The m =n case: polynomial interpolation

Definition. The polynomial interpolant of data D = {(x;,y:),i=1,...,m} with x;#x; if i+ j
is a polynomial of degree m — 1

Pm_1(x)=co+tcix+...+cpm_1z™mt

that satisfies the conditions p,, 1(x;) =1, i=1,...,m.

e We can apply the same approach. In this particular case, the error e can be made zero.

c.om=3; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+cl*x.+c2*x.72;
.. A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].72; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];

.. ¢ = R\ (transpose(Q) *yex)

Note that the coefficients used to generate the data are recovered exactly.



The m =n case: polynomial interpolation

Definition. The polynomial interpolant of data D = {(x;,y:),i=1,...,m} with x;#x; if i+ j
is a polynomial of degree m — 1

Pm_1(x)=co+tcix+...+cpm_1z™mt

that satisfies the conditions p,, 1(x;) =1, i=1,...,m.

e We can apply the same approach. In this particular case, the error e can be made zero.

c.om=3; x=(0:m-1)./m; c0=2; c1=3; c2=-5; yex=c0.+cl*x.+c2*x.72;
.. A=ones(m,3); A[:,2]=x[:]; A[:,3]=x[:].72; QR=qr(A); Q=QR.Q[:,1:3]; R=QR.R[1:3,1:3];

.. ¢ = R\ (transpose(Q) *yex)

2.0
2.9999999999999987 (3)
—4.999999999999999

Note that the coefficients used to generate the data are recovered exactly.
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