

Overview

- Orthogonal projectors
- Gaussian elimination
- Row echelon reduction
- Matrix rank from row echelon reduction
- ullet LU-factorization

- Consider the linear system Ax = b with $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. Orthogonal projectors and knowledge of the four fundamental matrix subspaces allows us to succintly express whether there exist no solutions, a single solution of an infinite number of solutions:
 - Consider the factorization QR = A, the orthogonal projector $P = QQ^T$, and the complementary orthogonal projector I P
 - If $\|(I-P)b\| \neq 0$, then b has a component outside the column space of A, and Ax = b has no solution
 - If ||(I P)b|| = 0, then $b \in C(Q) = C(A)$ and the system has at least one solution
 - If $N(A) = \{0\}$ (null space only contains the zero vector, i.e., null space of dimension 0) the system has a unique solution
 - If dim $N(\mathbf{A}) = n r > 0$, then a vector $\mathbf{y} \in N(\mathbf{A})$ in the null space is written as

$$\mathbf{y} = c_1 \mathbf{z}_1 + \dots + c_{n-r} \mathbf{z}_{n-r}$$

and if x is a solution of Ax = b, so is x + y, since

$$A(x+y) = Ax + c_1Az_1 + ... + c_{n-r}Az_{n-r} = b + 0 + ... + 0 = b$$

The linear system has an (n-r)-parameter family of solutions

ullet Idea: make one fewer unknown appear in each equation. Use first equation to eliminate x_1 in equations 2,3

$$\begin{cases} x_1 + 2x_2 - x_3 &= 2 \\ 2x_1 - x_2 + x_3 &= 2 \\ 3x_1 - x_2 - x_3 &= 1 \end{cases} \Rightarrow \begin{cases} x_1 + 2x_2 - x_3 &= 2 \\ -5x_2 + 3x_3 &= -2 \\ -7x_2 + 2x_3 &= -5 \end{cases}$$

• Use second equation to eliminate x_2 in equation 3

$$\begin{cases} x_1 + 2x_2 - x_3 &= 2 \\ -5x_2 + 3x_3 &= -2 \\ -7x_2 + 2x_3 &= -5 \end{cases} \Rightarrow \begin{cases} x_1 + 2x_2 - x_3 &= 2 \\ -5x_2 + 3x_3 &= -2 \\ -\frac{11}{5}x_3 &= -\frac{11}{5} \end{cases}$$

• Start finding components from last to first to obtain $x_3 = 1$, $x_2 = 1$, $x_1 = 1$

• Explicitly writing the unknowns x_1, x_2, x_3 is not necessary. Intoduce the "bordered" matrix

$$\left[\begin{array}{cccc} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 3 & -1 & -1 & 1 \end{array}\right]$$

- Define allowed operations:
 - multiply a row by a non-zero scalar
 - add a row to another
- Bordered matrices obtained by the allowed operations are said to be *similar*, in that the solution of the linear system stays the same

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 3 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & -7 & 2 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & -\frac{11}{5} & -\frac{11}{5} \end{bmatrix}$$

To find solution, use allowed operations to make an identity matrix appear

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & -\frac{11}{5} & -\frac{11}{5} \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The above constitute "Gaussian elimination"

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 3 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & -7 & 2 & -5 \end{bmatrix}$$

```
\therefore A = [1. 2 -1 2; 2 -1 1 2; 3 -1 -1 1]; A[2,:] = A[2,:] -2*A[1,:]; A[3,:] = A[3,:] -3*A[1,:];
```

.. A

```
A[3,:]=A[3,:]-(7/5)*A[2,:]; A
```

To find solution, use allowed operations to make an identity matrix appear

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & -\frac{11}{5} & -\frac{11}{5} \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The above constitute "Gaussian elimination"

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 3 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & -7 & 2 & -5 \end{bmatrix}$$

$$\therefore A = [1. 2 -1 2; 2 -1 1 2; 3 -1 -1 1]; A[2,:] = A[2,:] -2*A[1,:]; A[3,:] = A[3,:] -3*A[1,:];$$

.. A

$$\begin{bmatrix}
1.0 & 2.0 & -1.0 & 2.0 \\
0.0 & -5.0 & 3.0 & -2.0 \\
0.0 & -7.0 & 2.0 & -5.0
\end{bmatrix}$$
(1)

$$A[3,:]=A[3,:]-(7/5)*A[2,:]; A$$

To find solution, use allowed operations to make an identity matrix appear

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & -\frac{11}{5} & -\frac{11}{5} \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

The above constitute "Gaussian elimination"

$$\begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 3 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & -5 & 3 & -2 \\ 0 & -7 & 2 & -5 \end{bmatrix}$$

$$\therefore A = [1. 2 -1 2; 2 -1 1 2; 3 -1 -1 1]; A[2,:] = A[2,:] -2*A[1,:]; A[3,:] = A[3,:] -3*A[1,:];$$

.. A

$$\begin{bmatrix}
1.0 & 2.0 & -1.0 & 2.0 \\
0.0 & -5.0 & 3.0 & -2.0 \\
0.0 & -7.0 & 2.0 & -5.0
\end{bmatrix}$$
(2)

$$A[3,:]=A[3,:]-(7/5)*A[2,:]; A$$

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}, \boldsymbol{b} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} \in \mathbb{R}^3, \boldsymbol{c} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} \in \mathbb{R}^3.$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 3 & 3 \end{bmatrix} \sim \begin{bmatrix} \mathbf{A}_1 & \mathbf{b}_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{cases} x_1 + 2x_2 + 3x_3 & =3 \\ x_2 + x_3 & =1 \\ 0 & =0 \end{cases},$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{c} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} \mathbf{A}_1 & \mathbf{c}_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Leftrightarrow \begin{cases} x_1 + 2x_2 + 3x_3 & =3 \\ x_2 + x_3 & =1 \\ 0 & =1 \end{cases} .$$

- Use similarity transformations to reduced row echelon form:
 - All zero rows are below non-zero rows
 - First non-zero entry on a row is called the *leading entry*
 - In each non-zero row, the leading entry is to the left of lower leading entries
 - Each leading entry equals 1 and is the only non-zero entry in its column
- Row echelon form:
 - Allow additional non-zero elements in a column, above the leading entry
- After carrying out rref on bordered matrix $[A \mid b]$, if:
 - there is a row with $\begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix} \Rightarrow \mathsf{No}$ solutions
 - ullet the result is of form $[m{I} \mid c] \Rightarrow {\sf Unique}$ solution
 - there is no row of form $[\ 0\ 0\ ...\ 0\ |\ 1\]$, and there is a row of all zeros $[\ 0\ 0\ ...\ 0\ |\ 0\]$ \Rightarrow Infinitely many solutions

Examples

$$\begin{bmatrix} 1 & -1 & 0 & 1 & | & 2 \\ 0 & 0 & 1 & -1 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \text{Infinitely many solutions}$$

$$\begin{bmatrix} 1 & 2 & -4 & | & -4 \\ 0 & 3 & -1 & | & 2 \\ 0 & 0 & 8 & | & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & -2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \Rightarrow \text{Unique solution}$$

• Recall the basic operation in row echelon reduction: constructing a linear combination of rows to form zeros beneath the main diagonal, e.g.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ a_{31} & a_{32} & \dots & a_{3m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{pmatrix} \sim \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22} - \frac{a_{21}}{a_{11}} a_{12} & \dots & a_{2m} - \frac{a_{21}}{a_{11}} a_{1m} \\ 0 & a_{32} - \frac{a_{31}}{a_{11}} a_{12} & \dots & a_{3m} - \frac{a_{31}}{a_{11}} a_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{m2} - \frac{a_{m1}}{a_{11}} a_{12} & \dots & a_{mm} - \frac{a_{m1}}{a_{11}} a_{1m} \end{pmatrix}$$

• This can be stated as a matrix multiplication operation, with $l_{i1} = a_{i1}/a_{11}$

$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -l_{21} & 1 & 0 & \dots & 0 \\ -l_{31} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -l_{m1} & 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ a_{31} & a_{32} & \dots & a_{3m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22} - l_{21}a_{12} & \dots & a_{2m} - l_{21}a_{1m} \\ 0 & a_{32} - l_{31}a_{12} & \dots & a_{3m} - l_{31}a_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{m2} - l_{m1}a_{12} & \dots & a_{mm} - l_{m1}a_{1m} \end{pmatrix}$$

Denote a permutation by

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \dots & m \\ i_1 & i_2 & \dots & i_m \end{array}\right)$$

with
$$i_1, ..., i_m \in \{1, ..., m\}$$
, $i_j \neq i_k$ for $j \neq k$

• The sign of a permutation, $\nu(\sigma)$ is the number of pair swaps needed to obtain the permutation starting from the identity permutation

$$\left(\begin{array}{ccc} 1 & 2 & \dots & m \\ 1 & 2 & \cdots & m \end{array}\right)$$

• A permutation can be specified by a permutation matrix ${m P}$ obtained from ${m I}$ by swapping rows and columns $k \leftrightarrow i_k$

Definition. The matrix

$$\boldsymbol{L}_{k} = \begin{pmatrix} 1 & \dots & 0 & \dots & 1 \\ 0 & \ddots & 0 & \dots & 0 \\ 0 & \dots & 1 & \dots & 0 \\ 0 & \dots & -l_{k+1,k} & \dots & 0 \\ 0 & \dots & -l_{k+2,k} & \dots & 0 \\ \vdots & \dots & \vdots & \ddots & \vdots \\ 0 & \dots & -l_{m,k} & \dots & 1 \end{pmatrix}$$

with $l_{i,k} = a_{i,k}^{(k)}/a_{k,k}^{(k)}$, and $\mathbf{A}^{(k)} = \left(a_{i,j}^{(k)}\right)$ the matrix obtained after step k of row echelon reduction (or, equivalently, Gaussian elimination) is called a Gaussian multiplier matrix.

Permutation and Gaussian multiplier matrices are elementary matrices.

The Gaussian multiplier matrix ...

$$L_k = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ 0 & \ddots & 0 & \dots & 0 \\ 0 & \dots & 1 & \dots & 0 \\ 0 & \dots & -l_{k+1,k} & \dots & 0 \\ \vdots & \dots & \vdots & \ddots & \vdots \\ 0 & \dots & -l_{m,k} & \dots & 1 \end{pmatrix}$$

• ... has inverse (matrix that "undoes" the linear transformation)

$$\boldsymbol{L}_{k}^{-1} = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ 0 & \ddots & 0 & \dots & 0 \\ 0 & \dots & 1 & \dots & 0 \\ 0 & \dots & l_{k+1,k} & \dots & 0 \\ \vdots & \dots & \vdots & \ddots & \vdots \\ 0 & \dots & l_{m,k} & \dots & 1 \end{pmatrix}$$

• Consider elementary matrices

$$m{E}_1 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ -3 & 0 & 1 \end{bmatrix}, m{E}_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 3 & 0 & 1 \end{bmatrix}, m{E}_1 m{E}_2 = m{E}_2 m{E}_1 = m{I},$$

stating that E_1 undoes the effect of E_2 .

ullet $A \in \mathbb{R}^{m imes m}$ is invertible if there exists $oldsymbol{X} \in \mathbb{R}^{m imes m}$ such that

$$AX = XA = I$$

• Notation $X = A^{-1}$, is the *inverse* of A.

- What about general square matrices $A \in \mathbb{R}^{m \times m}$? How to find inverse
- X is inverse if AX = I or

- Find the inverse is equivalent to solving systems $Ax_1 = e_1, \ldots, Ax_m = e_m$
- Gauss Jordan algoritm generalizes Gaussian elimination that solves a single linear system to solving m systems simultaneously by forming the bordered matrix $[\ A \ | \ I \]$

- When does a matrix inverse exist? $A \in \mathbb{R}^{m \times m}$
 - a A invertible
 - b Ax = b has a unique solution for all $b \in \mathbb{R}^m$
 - c Ax = 0 has a unique solution
 - d The reduced row echelon form of A is I
 - e A can be written as product of elementary matrices

$$a \Rightarrow b \Rightarrow c \Rightarrow d \Rightarrow e \Rightarrow a$$

 $a \Rightarrow b$ A invertible $\Rightarrow A^{-1}$ exists, and $x = A^{-1}b$ is a solution $A(A^{-1}b) = (AA^{-1})b = b$. If there were two solutions x, y, then

$$x - y = (A^{-1}A)(x - y) = A^{-1}(Ax - Ay) = A^{-1}(b - b) = A^{-1}0 = 0.$$

- $b \Rightarrow c$ Choose b = 0
- $c \Rightarrow d \ [\ A \ | \ 0\] \sim [\ U \ | \ 0\].$ If $U \neq I$ there is a row of zeros, and solution is not unique. If solution is unique then U = I
- $d \Rightarrow e \ [A \ | \ 0] \sim [I \ | \ 0] \text{ implies } E_k...E_1 A = I \Rightarrow A = E_1^{-1}...E_k^{-1}$
- $e \Rightarrow a \quad A = E_1^{-1} ... E_k^{-1} \Rightarrow A^{-1} = E_k ... E_1$.

• The inverse of a product $(\boldsymbol{A}\boldsymbol{B})^{-1} = \boldsymbol{B}^{-1}\boldsymbol{A}^{-1}$

$$(AB)B^{-1}A^{-1} = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

$$B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

• If $\boldsymbol{A} \in \mathbb{R}^{m \times m}$ invertible so are: $c\boldsymbol{A}$, \boldsymbol{A}^T , \boldsymbol{A}^k

$$(A^T)^{-1} = (A^{-1})^T$$

Verify

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I$$

$$(A^{-1})^T A^T = (A A^{-1})^T = I$$