MATH347DS L08: Linear system solution

Overview

e Orthogonal projectors

e Gaussian elimination

e Row echelon reduction

e Matrix rank from row echelon reduction

e [ U-factorization



Orthogonal projectors and linear systems

e Consider the linear system Ax =b with AcR"*", & € R", b€ R"". Orthogonal projectors and knowledge
of the four fundamental matrix subspaces allows us to succintly express whether there exist no solutions, a
single solution of an infinite number of solutions:

Consider the factorization Q R = A, the orthogonal projector P = Q Q"' and the complementary orthog-
onal projector I — P

If ||(I — P)b||#0, then b has a component outside the column space of A, and Ax = has no solution
If ||[(L —P)b||=0, then be C(Q)=C(A) and the system has at least one solution

If N(A)={0} (null space only contains the zero vector, i.e., null space of dimension 0) the system has
a unique solution

If dim N(A)=mn —r>0, then a vector y € N(A) in the null space is written as
Yy=ciz1t...+tCh—rZn—r
and if x is a solution of Ax =0b, so is  + vy, since
Alx+y)=Ax+c1Az+...+¢cp Az, _,=b+0+...+0=0

The linear system has an (n — r)-parameter family of solutions



Gaussian elimination: an alternative approach that does not require orthogonality

e Idea: make one fewer unknown appear in each equation. Use first equation to eliminate 1 in equations 2,3
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e Use second equation to eliminate x5 in equation 3
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e Start finding components from last to first to obtain x3=1, zo=1,21=1



Matrix similarity transformations: reduce to triangular form

e Explicitly writing the unknowns 1, x2, x3 is not necessary. Intoduce the “bordered” matrix

e Define allowed operations:
— multiply a row by a non-zero scalar

— add a row to another

e Bordered matrices obtained by the allowed operations are said to be similar, in that the solution of the linear

system stays the same
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Matrix similarity transformations: Back substitute

e To find solution, use allowed operations to make an identity matrix appear
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e The above constitute “Gaussian elimination”

CoA=[1. 2 -1 2; 2 -112; 3 -1-11]; A[2,:]1=A[2,:]1-2%A[1,:]; A[3,:1=A[3,:]1-3%A[1,:];

-1 2
3 -2 |
11 11
5 5
1 2 -1 2
2 -1 1 2
3 -1 —1 1

1 2 -1 2
0 -5 3 =2
0O 0 1 1
1 2 -1
~ 0 =5 3
0 =7 2

10
~1 0 1
00

2
—2
)

_ o O

—_ =

. AL3,:1=A[3,:1-(7/5)*A[2,:]; A




Matrix similarity transformations: Back substitute

e To find solution, use allowed operations to make an identity matrix appear

1 2
0 —5
0 O

e The above constitute “Gaussian elimination”

CoA=[1. 2 -1 2; 2 -112; 3 -1-11]; A[2,:]1=A[2,:]1-2%A[1,:]; A[3,:1=A[3,:]1-3%A[1,:];
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Matrix similarity transformations: Back substitute

e To find solution, use allowed operations to make an identity matrix appear
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e The above constitute “Gaussian elimination”
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CoA=[1. 2 -1 2; 2 -112; 3 -1-11]; A[2,:]1=A[2,:]1-2%A[1,:]; A[3,:1=A[3,:]1-3%A[1,:];
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Two linear systems: same system matrix, different right hand sides
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How to determine number of solutions?

e Use similarity transformations to reduced row echelon form:
— All zero rows are below non-zero rows
— First non-zero entry on a row is called the leading entry
— In each non-zero row, the leading entry is to the left of lower leading entries
— Each leading entry equals 1 and is the only non-zero entry in its column
e Row echelon form:
— Allow additional non-zero elements in a column, above the leading entry
e After carrying out rref on bordered matrix [ A | b |, if:

e thereisarowwith [0 0 ... 0 | 1]=-No solutions
e the result is of form [ I | ¢ | = Unique solution
e thereisnorowofform [0 0 ... 0 | 1], and thereisarow of all zeros [0 0 ..
many solutions
Examples
1 -101 |2
00 1 —1 | 1 |= Infinitely many solutions
00 00 |0
12 —4 | —4 100 | -2
03 1|2 |~]|010]| 1 [=Uniquesolution
008 |8 001]1

. 0 | 0]= Infinitely



Elementary matrices: Row combinations

e Recall the basic operation in row echelon reduction: constructing a linear combination of rows to form zeros
beneath the main diagonal, e.g.
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e This can be stated as a matrix multiplication operation, with [;1 =a;1/a11
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Elementary matrices: Permutation

e Denote a permutation by

with i1, ...t €4{1,...,m}, ijF iy for j#k

e The sign of a permutation, /(o) is the number of pair swaps needed to obtain the permutation starting from

the identity permutation
1 2 ...m
12 -« m

e A permutation can be specified by a permutation matrix P obtained from I by swapping rows and columns
k<1



Gaussian multiplier matrix

Definition. The matrix
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with l; ;= a,fk,z/a,gki and A) = (a(k)) the matrix obtained after step k of row echelon reduction (or, equiva-

2%
lently, Gaussian elimination) is called a Gaussian multiplier matrix.

Permutation and Gaussian multiplier matrices are elementary matrices.



Gaussian multiplier inverse

e The Gaussian multiplier matrix ...
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e ... has inverse (matrix that “undoes” the linear transformation)
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Inverse matrix

e Consider elementary matrices

1 00 100
Ei=|0 10/,E;=|010 | EE;=EE-=1I,
~3 0 1 30 1

stating that F undoes the effect of F\.

o AcR™X™ js invertible if there exists X € R™*™ such that
AX=XA=1

e Notation X = A~ ! is the inverse of A.



Gauss-Jordan algorithm

What about general square matrices A € R *"™? How to find inverse

o X isinverseif AX=1Ior

Alxy oo ... T |=| Axy Axy ... Az, |=[e€1 ex ... €, ]

Find the inverse is equivalent to solving systems Ax1=e4, ..., Ax,,=¢€,,

e Gauss Jordan algoritm generalizes Gaussian elimination that solves a single linear system to solving m systems
simultaneously by forming the bordered matrix [ A | I |

(A | T|~[1T ]| X]



Existence of inverse

e When does a matrix inverse exist? A € R *™

a A invertible

b Ax =0>b has a unique solution for all b€ R™

¢ Ax =0 has a unique solution

d The reduced row echelon form of A is I

e A can be written as product of elementary matrices

a=>b=>c=>d=e=a

a=-b A invertible = A~! exists, and x = A" 'b is a solution A(A~'b)=(AA1)b=>b. If there were two
solutions x, y, then
r—y=(A"1A)(z—-—y)=A"(Axz—-Ay)=A"1(b-b)=A"10=0.
b=-c Choose b=0
c=d [A | 0]~[U | 0].If U=#I there is a row of zeros, and solution is not unique. If solution is unique
then U =1
d=e [A | 0]~[I | 0]implies Ey..EiA=I=A=E;{'.. E;"

e=a A=E{'...E;'=A'=E,. . .E,.



Operations with matrix inverses

e The inverse of a product (AB) '!=B-1A~!
(AB) B'A '=A(BB Y)A '1=ATA '=AA"1=1
B 1A' (AB)=B '(A'A)B=B'IB=B'B=1
o If AcR™*™ jnvertible so are: cA, AL, AF
(AT)"1= (AT
Verify

AT (AN =(A AT =1

(A—l)TAT: (A A—l)T:I
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