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ABSTRACT

This textbook presents the essential concepts from linear algebra of direct utility to analysis

of large data sets. The theoretical foundations of the emerging discipline of Data Science are

still being de�ned at present, but linear algebra is certainly one the cornerstones. Traditional

presentations of linear algebra re�ect its historical roots with a focus on linear systems and

determinants, typically of small size. Presentation of the topic o�en links solutions of linear sys-

tems to posible intersections of lines or planes. Such an approach is ill-suited for data science in

which the primary interest is in e�cient description of large data sets, and automated extraction

of regularity from the available data. Neither is the essence of solving a linear system presented

as the information-conserving coordinate transformation that it actually represents when the

system matrix is of full rank.

The emphasis in linear algebra presentation suggested by data science is quite di�erent. The

focus naturally shi�s to the essential problem of e�cient description of large data sets using a

small, typically incomplete set of feature vectors. Linear algebra becomes the study of the basic

operation of linear combination and its potential as a descriptor of large data sets. Rather than

concentrate on the basis transformation represented by linear system solution, the focus shi�s

to maximal information compression. Instead of Gaussian elimination, the crucial algorithm

becomes the singular value decomposition. The typical operation required is not to solve a linear

system, but to construct low-dimensional approximations of the available data through projec-

tion and least squares.

Furthermore, computational exercises based on small matrices obscure the vitality and utility of

linear algebra in data science of describing objects as disparate and information-rich as images,

medical scans or sound recordings. To more faithfully portray the way linear algebra actually

gets used in data science, this textbook is packaged with a so�ware environment that contains

extensive data sets, code snippets to carry out typical analysis, and procedures to transform

heterogeneous data sources into standard linear algebra representations. Rather than relegate

computational applications to isolated sections, the entire text is interspersed with practical

examples using the Julia language, well suited for linear algebra and data science.

This textbook is dra�ed and meant to be worked through in TeXmacs, a scienti�c editing plat-

form that features �live documents� with embedded computational examples constructed in

freely available mathematical so�ware systems such as Asymptote, Eukleides, Gnuplot, Julia,

Maxima, and Octave.

This textbook was developed for an intensive Maymester course that meets in twelve sessions

of three hours each. The content organization re�ects a desire to present crucial mathematical

ideas and practical skills to students from various backgrounds who might be interested in data

science. The key concepts required for mathematics students are present: vector spaces, matrix

factorizations, linear systems, eigenvalues. For a more general audience, these mathematical
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topics are also recast as addressing speci�c aspects of data: expressiveness, redundancy, e�-

ciency, compression, partitioning. More than a simple relabeling, this reinterpretation allows

for application of linear algebra operations to data far removed from the physical sciences or

engineering. The text and its associated so�ware environment considers data sets from visual

art, music, biology, medicine, social sciences.
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CHAPTER 1

LINEAR COMBINATIONS

VECTORS ANDMATRICES

SYNOPSIS. Data science arises from the need to organize massive amounts of data into mean-

ingful insights into some natural or social process. There are many ways to do so such as lists,

trees, clusters. Linear algebra concentrates on grouping quantifiable data into sets of fixed

length, known as vectors. Multiple vectors are subsequently grouped as matrices, and a for-

malism is established to work with vectors and matrices.

1. Numbers

1.1. Number sets

Several types of numbers have been introduced in mathematics to express di�erent types of

quantities, and the following will be used throughout this text:

�. The set of natural numbers,�= {0, 1, 2, 3, . . .}, in�nite and countable,�

+

={1,2, 3, . . .};

$. The set of integers, $= {0,±1,±2, ±3, . . .}, in�nite and countable;

�. The set of rational numbers � = {p/q,p�$,q ��

+

}, in�nite and countable;

�. The set of real numbers, in�nite, not countable, can be ordered;

�. The set of complex numbers, � = {x + iy , x , y ��}, infinite, not countable, cannot be

ordered.

These sets of numbers form a hierarchy, with ��$�� ����. The size of a set of numbers is

an important aspect of its utility in describing natural phenomena. The set S ={Mary,Jane,Tom}

has three elements, and its size is de�ned by the cardinal number , |S |=3. The sets �,$,� ,�,�

have an in�nite number of elements, but the relation

z =

{

{

{

{

{

{
{

{

{

{

{

{

�n /2 forn even

(n +1)/2 forn odd

de�nes a one-to-one correspondence between n �� and z �$, so these sets are of the same size

denoted by the trans�nite number 5

0

(aleph-zero). The rationals can also be placed into a one-

to-one correspondence with�, hence

|�|= |$|= |� |=5

0

.
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In contrast there is no one-to-one mapping of the reals to the naturals, and the cardinality of

the reals is |�|= (Fraktur-script c). Intuitively, there are exponentially more reals than naturals,

formally stated in set theory as  =2

5

0

.

1.2. Quantities described by a single number

The above numbers and their computer approximations are su�cient to describe many quanti-

ties encountered in applications. Typical examples include:

" the position x �� of a point on the unit line segment [0,1], approximated by the �oating

point number xÜ �F, to within machine epsilon precision, |x �xÜ |� õ;

" the measure of resistance to change of the rate of motion known as mass, m��, m>0;

" the population of a large community expressed as a �oat p�F, even though for a com-

munity of individuals the population is a natural number, as in �the population of the

United States is p=328.2E6, i.e., 328.2 million�.

Inmost disciplines, there is a particular interest in comparison of two quantities, and to facilitate

such comparison a common reference is used known as a standard unit . For measurement of

a length L, the meter � = 1m is a standard unit, as in the statement L = 10m, that states that

L is obtained by taking the standard unit ten times, L = 10� . The rules for carrying out such

comparisons are part of the de�nition of real and rational numbers.

1.3. Quantities described by multiple numbers

Other quantities require more than a single number. The distribution of population in

the year 2000 among the alphabetically-ordered South American countries (Argentina,

Bolivia,..,Venezuela) requires 12 numbers. These are placed together in a list known in math-

ematics as a tuple, in this case a 12-tuple P =(p

1

,p

2

, . . . ,p

12

), with p

1

the population of Argentina,

p

2

that of Bolivia, and so on. An analogous 12-tuple can be formed from the South American

populations in the year 2020, say Q = (q

1

,q

2

, . . . ,q

12

). Note that it is di�cult to ascribe meaning

to apparently plausible expressions such as P +Q since, for instance, some people in the 2000

population are also in the 2020 population, and would be counted twice.

2. Vectors

2.1. Vector spaces

In contrast to the population 12-tuple example above, combiningmultiple numbers is well defined

in operations such as specifying a position within a three-dimensional Cartesian grid, or deter-

mining the resultant of two forces in space. Both of these lead to the consideration of 3-tuples

or triples such as the force ( f

1

, f

2

, f

3

). When combined with another force (g

1

, g

2

, g

3

) the resul-

tant is ( f

1

+ g

1

, f

2

+ g

2

, f

3

+ g

3

). If the force ( f

1

, f

2

, f

3

) is ampli�ed by the scalar ± and the force

(g

1

,g

2

,g

3

) is similarly scaled by ² , the resultant becomes

±( f

1

, f

2

, f

3

)+²(g

1

,g

2

,g

3

)= (±f

1

,±f

2

,±f

3

)+(²g

1

,²g

2

,²g

3

)= (±f

1

+²g

1

,±f

2

+²g

2

,±f

3

+²g

3

).
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It is useful to distinguish tuples for which scaling and addition is well de�ned from simple lists

of numbers. In fact, since the essential di�erence is the behavior with respect to scaling and

addition, the focus should be on these operations rather than the elements of the tuple.

The above observations underlie the defin-

ition of a vector space± by a set V whose ele-

ments satisfy scaling and addition properties,

denoted all together by the 4-tuple ± = (V ,

S,+, Å). The �rst element of the 4-tuple is a set

whose elements are called vectors. The second

element is a set of scalars, and the third is

the vector addition operation. The last is the

scaling operation, seen as multiplication of a

vector by a scalar. Vector addition and scaling

operations must satisfy rules suggested by

positions or forces in three-dimensional space,

which are listed in Table 1.1. In particular, a

vector space requires de�nition of two distin-

guished elements: the zero vector 0 �V , and

the identity scalar element 1�S.

Addition rules for �a ,b , c �V

a +b �V Closure

a +(b + c)= (a +b)+ c Associativity

a +b =b + a Commutativity

0+a =a Zero vector

a +(�a )=0 Additive inverse

Scaling rules for �a ,b �V , �x ,y �S

x a �V Closure

x(a +b)=xa +xb Distributivity

(x +y)a =xa +ya Distributivity

x(ya )=(xy)a Composition

1a =a Scalar identity

Table 1.1. Vector space±= (V ,S, +, Å) properties.

The de�nition of a vector space re�ects everyday experience with vectors in Euclidean geometry,

and it is common to refer to such vectors by descriptions in a Cartesian coordinate system. For

example, a position vector r within the plane can be referred through the pair of coordinates

(x ,y). This intuitive understanding can be made precise through the de�nition of a vector space

�

2

= (�

2

,�, +, Å), called the real 2-space. Vectors within �

2

are elements of �

2

=�×�= {(x ,y)|x ,

y ��}, meaning that a vector is speci�ed through two real numbers, r�(x ,y). Addition of two

vectors, q� (s, t), r� (x , y) is de�ned by addition of coordinates q + r = (s + x , t + v). Scaling

r�(x ,y) by scalar a is de�ned by ar�(ax ,ay). Similarly, consideration of position vectors in

three-dimensional space leads to the de�nition of the �

3

= (�

3

,�, +, Å), or more generally a real

m-space �

m

=(�

m

,�, +, Å), m��, m>0.

2.2. Real vector space �

m

Column vectors. Since the real spaces �

m

= (�

m

,�, +, Å) play such an important role in them-

selves and as a guide to other vector spaces, familiarity with vector operations in�

m

is necessary

to fully appreciate the utility of linear algebra to a wide range of applications. Following the

usage in geometry and physics, the m real numbers that specify a vector u ��

m

are called the

components of u . The one-to-one correspondence between a vector and its components u�

(u

1

, . . . ,u

m

), is by convention taken to de�ne an equality relationship,

u =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

Å

Å

Å

u

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (1.1)

with the components arranged vertically and enclosed in square brackets. Given two vectors u ,

v ��

m

, and a scalar a��, vector addition and scaling are de�ned in �

m

by real number addition
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and multiplication of components

u +v =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

Å

Å

Å

u

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

v

1

Å

Å

Å

v

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

+v

1

Å

Å

Å

u

m

+v

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,au =a

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

Å

Å

Å

u

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

au

1

Å

Å

Å

au

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (1.2)

The vector space �

m

is de�ned using the real numbers as the set of scalars, and constructing

vectors by grouping together m scalars, but this approach can be extended to any set of scalars

S, leading to the de�nition of the vector spaces ®

n

=(S

n

,S,+, Å). These will o�en be referred to as

n-vector space of scalars, signifying that the set of vectors is V =S

n

.

To aid in visual recognition of vectors, the following notation conventions are introduced:

" vectors are denoted by lower-case bold Latin letters: u ,v ;

" scalars are denoted by normal face Latin or Greek letters: a,b,± ,² ;

" the components of a vector are denoted by the corresponding normal face with sub-

scripts as in equation (1.1);

" related sets of vectors are denoted by indexed bold Latin letters: u

1

,u

2

, . . . ,u

n

.

In Julia, successive components placed vertically are separated by a semicolon.

4 [1; 2; -1; 2]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

2

�1

2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(1.3)

4

The equal sign in mathematics signi�es a particular equivalence relationship. In computer sys-

tems such as Julia the equal sign has the di�erent meaning of assignment , that is de�ning the

label on the le� side of the equal sign to be the expression on the right side. Subsequent invoca-

tion of the label returns the assigned object. Components of a vector are obtained by enclosing

the index in parantheses.

4 u=[1; 2; -1; 2]; u

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

2

�1

2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(1.4)

4

Row vectors. Instead of the vertical placement or components into one column, the compo-

nents of could have been placed horizontally in one row [
u

1

. . . u

m

], that contains the same

data, di�erently organized. By convention vertical placement of vector components is the pre-
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ferred organization, and u shall denote a column vector henceforth. A transpose operation

denoted by a T superscript is introduced to relate the two representations

u

T

=[
u

1

. . . u

m

],

and u

T

is the notation used to denote a row vector . In Julia, horizontal placement of successive

components in a row is denoted by a space.

4 uT=transpose(u)

[ 1 2 �1 2 ] (1.5)

4

Compatible vectors. Addition of real vectors u , v ��

m

de�nes another vector w = u + v ��

m

.

The components of w are the sums of the corresponding components of u and v , w

i

= u

i

+ v

i

,

for i = 1, 2, . . . ,m. Addition of vectors with di�erent number of components is not de�ned, and

attempting to add such vectors produces an error. Such vectors with di�erent number of com-

ponents are called incompatible, while vectors with the same number of components are said to

be compatible. Scaling of u by a de�nes a vector z =au , whose components are z

i

=au

i

, for i =1,

2, . . . ,m. Vector addition and scaling in Julia are de�ned using the + and � operators.

4 uT=[1 0 1 2]; vT=[2 1 3 -1]; wT=uT+vT

[
3 1 4 1

] (1.6)

4 rT=[1 2]; uT+rT

DimensionMismatch

4

2.3. Working with vectors

Ranges. The vectors used in applications usually have a large number of components, mk

1, and it is important to become pro�cient in their manipulation. Previous examples de�ned

vectors by explicit listing of their m components. This is impractical for large m, and support is

provided for automated generation for o�en-encountered situations. First, observe that Table

1.1 mentions one distinguished vector, the zero element that is a member of any vector space

0�V . The zero vector of a real vector space �

m

is a column vector with m components, all of

which are zero, and a mathematical convention for specifying this vector is 0

T

= [ 0 0 . . . 0 ]�

�

m

. This notation speci�es that transpose of the zero vector is the row vector with m zero com-

ponents, also written through explicit indexing of each component as 0

i

=0, for i =1, . . . ,m. Keep

in mind that the zero vector 0 and the zero scalar 0 are di�erent mathematical objects. The

ellipsis symbol in the mathematical notation is transcribed in Julia by the notion of a range, with

1:m denoting all the integers starting from 1 to m, organized as a row vector. The notation is

extended to allow for strides di�erent from one, and the mathematical ellipsis i =m,m�1,. .. , 1 is

denoted as m:-1:1. In general r:s:t denotes the set of numbers {r , r +s, . . . , r +ns} with r +ns� t ,

and r , s, t real numbers and n a natural number, r , s, t ��, n ��. If there is no natural number n

such that r +ns � t , an empty vector with no components is returned.
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4 m=4; 1:m

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

2

3

4

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(1.7)

4 m:-1:2

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

4

3

2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(1.8)

4 r=0; s=0.2; t=1; (r:s:t)'

[ 0.0 0.2 0.4 0.6 0.8 1.0 ] (1.9)

4 r=0; s=0.3; t=1; (r:s:t)'

[
0.0 0.3 0.6 0.9

] (1.10)

4 r=0; s= -0.2; t=1; (r:s:t)'

[ ] (1.11)

4

Visualization. A component-by-component display of a vector becomes increasingly unwieldy

as the number of components m becomes large. For example, the numbers below seem an inef-

�cient way to describe the sine function.

4 t=LinRange(0,1.5,10); y=sin.(t)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0.0

0.16589613269341502

0.3271946967961522

0.479425538604203

0.618369803069737

0.7401768531960371

0.8414709848078965

0.9194449792537551

0.9719379013633127

0.9974949866040544

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(1.12)

Indeed, such a piece-by-piece approach is not the way humans organize large amounts of infor-

mation, preferring to conceptualize the data as some other entity: an image, a sound excerpt, a

smell, a taste, a touch, a sense of balance, or relative position. All seven of these human senses

will be shown to allow representation by linear algebra concepts, including representation by

vectors.

4 clf(); plot(t,y); grid("on"); xlabel("t"); ylabel("y");
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4 cd(homedir()*"/courses/MATH347DS/images");

4 savefig("L01Fig01.eps");

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 1.1. Sample plot

3. Matrices

3.1. Forming matrices

The real numbers themselves form the vector space �

1

= (�,�, +, Å), as does any �eld of scalars,

®

1

= (S, S, +, Å). Juxtaposition of m real numbers has been seen to de�ne the new vector space

�

m

. This process of juxtaposition can be continued to form additional mathematical objects. A

matrix is de�ned as a juxtaposition of compatible vectors. As an example, consider n vectors a

1

,

a

2

, . . . ,a

n

�V within some vector space±= (V ,S, +, Å). Form a matrix by placing the vectors into

a row,

A =[
a

1

a

2

. . . a

n

]. (1.13)

To aid in visual recognition of a matrix, upper-case bold Latin letters will be used to denote

matrices. The columns of a matrix will be denoted by the corresponding lower-case bold letter

with a subscripted index as in equation (1.13). Note that the number of columns in a matrix can

be di�erent from the number of components in each column, as would be the case for matrix A

from equation (1.13) when choosing vectors from, say, the real space �

m

, a

1

,a

2

, . . . ,a

n

��

m

.

Vectors were seen to be useful juxtapositions of scalars that could describe quantities a single

scalar could not: a position in space, a force in physics, or a sampled function graph. The crucial

utility of matrices is their central role in providing a means to obtain new vectors from their

column vectors, as suggested by experience with Euclidean spaces.

3.2. Identity matrix

Consider �rst �

1

, the vector space of real numbers. A position vector r ��

1

on the real axis is

speci�ed by a single scalar component, r = [x], x ��. Read this to mean that the position r is
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obtained by traveling x units from the origin at position vector 0= [0]. Look closely at what is

meant by �unit� in this context. Since x is a scalar, the mathematical expression r =0 + x has

no meaning, as addition of a vector to a scalar has not been de�ned. Recall that scalars were

introduced to capture the concept of scaling of a vector, so in the context of vector spaces they

always appear as multiplying some vector. The correct mathematical description is r =0+ x e ,

where e is the unit vector e =[1]. Taking the components leads to r

1

=0

1

+xe

1

, where r

1

, 0

1

,e

1

are

the �rst (and in this case only) components of the r ,0, e vectors. Since r

1

= x , 0

1

= 0, e

1

=1, one

obtains the identity x =0+x Å1.

Now consider�

2

, the vector space of positions in the plane. Repeating the above train of thought

leads to the identi�cation of two direction vectors e

1

and e

2

r =

[

[

[

[

[

[

x

y

]

]

]

]

]

]

=x

[

[

[

[

[

[

1

0

]

]

]

]

]

]

+y

[

[

[

[

[

[

0

1

]

]

]

]

]

]

=x e

1

+y e

2

, e

1

=

[

[

[

[

[

[

1

0

]

]

]

]

]

]

, e

2

=

[

[

[

[

[

[

0

1

]

]

]

]

]

]

.

4 x=2; y=4; e1=[1; 0]; e2=[0; 1]; r=x*e1+y*e2

[

[

[

[

[

[

2

4

]

]

]

]

]

]

(1.14)

4

Continuing the procees to �

m

gives

x =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

Å

Å

Å

x

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=x

1

e

1

+x

2

e

2

+ Å Å Å +x

m

e

m

, e

1

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

0

Å

Å

Å

0

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, e

2

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

1

Å

Å

Å

0

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, . . . , e

m

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

0

Å

Å

Å

0

1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

For arbitrary m, the components are now x

1

, x

2

, . . . , x

m

rather than the alphabetically ordered

letters common for m=2 or m=3. It is then consistent with the adopted notation convention to

use x ��

m

to denote the position vector whose components are (x

1

, . . . ,x

m

). The basic idea is the

same as in the previous cases: to obtain a position vector scale direction e

1

by x

1

, e

2

by x

2

, . . . , e

m

by x

m

, and add the resulting vectors.

Juxtaposition of the vectors e

1

,e

2

,...,e

m

leads to the formation of a matrix of special utility known

as the identity matrix

I =[
e

1

e

2

. . . e

m

].

The identity matrix is an example of a matrix in which the number of column vectors n is equal

to the number of components in each column vector m=n. Such matrices with equal number of

columns and rows are said to be square. Due to entrenched practice an exception to the notation

convention is made and the identity matrix is denoted by I , but its columns are denoted the

indexed bold-face of a di�erent lower-case letter, e

1

, . . . , e

m

. If it becomes necessary to explicitly

state the number of columns in I , the notation I

m

is used to denote the identity matrix with m

columns, each with m components.
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4. Linear combinations

4.1. Linear combination as a matrix-vector product

The expression x = x

1

e

1

+x

2

e

2

+ Å Å Å + x

m

e

m

expresses the idea of scaling vectors within a set and

subsequent addition to form a new vector x . The matrix I =[ e

1

e

2

. . . e

m

] groups these vectors

together in a single entity, and the scaling factors are the components of the vector x . To bring

all these concepts together it is natural to consider the notation

x = Ix ,

as a generalization of the scalar expression x = 1 Å x . It is clear what the operation Ix should

signify: it should capture the vector scaling and subsequent vector addition x

1

e

1

+ x

2

e

2

+ Å Å Å +

x

m

e

m

. A speci�c meaning is now ascribed to Ix by identifying two de�nitions to one another.

Linear combination. Repeateadly stating �vector scaling and subsequent vector addition� is

unwieldy, so a special term is introduced for some given set of vectors {a

1

, . . . ,a

n

}.

DEFINITION. (LINEAR COMBINATION) . The linear combination of vectors a

1

,a

2

, . . . ,a

n

�V with scalars

x

1

,x

2

, . . . ,x

n

�S in vector space (V ,S, +, Å) is the vector b =x

1

a

1

+x

2

a

2

+ . . .x

n

a

n

.

Matrix-vector product. Similar to the grouping of unit vectors e

1

,...,e

m

into the identity matrix

I , a more concise way of referring to arbitrary vectors a

1

, . . . , a

n

from the same vector space is

the matrix A =[
a

1

a

2

. . . a

n

]. Combining these observations leads to the de�nition of a matrix-

vector product.

DEFINITION. (MATRIX-VECTOR PRODUCT) . In the vector space (V , S, +, Å), the product of matrix

A = [
a

1

a

2

. . . a

n

] composed of columns a

1

, a

2

, . . . , a

n

�V with the vector x �S

n

whose components

are scalars x

1

,x

2

, . . . ,x

n

�S is the linear combination b =x

1

a

1

+x

2

a

2

+ . . .x

n

a

n

=Ax �V .

4.2. Linear algebra problem examples

Linear combinations in E

2

. Consider a simple example that leads to a common linear algebra

problem: decomposition of forces in the plane along two directions. Suppose a force is given in

terms of components along the Cartesian x ,y -axes, b =b

x

e

x

+b

y

e

y

, as expressed by the matrix-

vector multiplication b = Ib . Note that the same force could be obtained by linear combination

of other vectors, for instance the normal and tangential components of the force applied on an

inclined plane with angle ¸ , b = x

t

e

t

+ x

n

e

n

, as in Figure 1.2. This de�nes an alternate reference

system for the problem. The unit vectors along these directions are

t =

[

[

[

[

[

[

cos¸

sin¸

]

]

]

]

]

]

, n =

[

[

[

[

[

[

�sin¸

cos¸

]

]

]

]

]

]

,

VECTORS AND MATRICES 19



and can be combined into a matrix A = [
t n

]. The value of the components (x

t

, x

n

) are the

scaling factors and can be combined into a vector x = [
x

t

x

n

]

T

. The same force must result

irrespective of whether its components are given along the Cartesian axes or the inclined plane

directions leading to the equality

Ib =b =Ax . (1.15)

Interpret equation (1.15) to state that the vector b could be obtained either as a linear combi-

nation of I , b = Ib , or as a linear combination of the columns of A, b =Ax . Of course the simpler

description seems to be Ib for which the components are already known. But this is only due to

an arbitrary choice made by a human observer to de�ne the force in terms of horizontal and ver-

tical components. The problem itself suggests that the tangential and normal components are

more relevant; for instance a friction force would be evaluated as a scaling of the normal force.

The components in this more natural reference system are not known, but can be determined

by solving the vector equality Ax =b , known as a linear system of equations. Procedures to carry

this out will be studied in more detail later, but Julia provides an instruction for this common

problem, the backslash operator, as in x=A\b.

4 ex=[1; 0]; ey=[0; 1]; b=[0.2; 0.4]; I=[ex ey]; I*b

[

[

[

[

[

[

0.2

0.4

]

]

]

]

]

]

(1.16)

4 th=pi/6; c=cos(th); s=sin(th); tvec=[c; s]; nvec=[-s; c];

4 A=[tvec nvec]

[

[

[

[

[

[

0.8660254037844387 �0.49999999999999994

0.49999999999999994 0.8660254037844387

]

]

]

]

]

]

(1.17)

4 x=A\b

[

[

[

[

[

[

0.37320508075688774

0.2464101615137755

]

]

]

]

]

]

(1.18)

4 x[1]*tvec+x[2]*nvec

[

[

[

[

[

[

0.2

0.4

]

]

]

]

]

]

(1.19)

4

Figure 1.2. Alternative decompositions of force on inclined plane.
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Note from the above calculations how the same vector is obtained by two di�erent linear com-

binations

b =

[

[

[

[

[

[

0.2

0.4

]

]

]

]

]

]

=0.2

[

[

[

[

[

[

1

0

]

]

]

]

]

]

+0.4

[

[

[

[

[

[

0

1

]

]

]

]

]

]

=0.373

[

[

[

[

[

[

0.866

0.500

]

]

]

]

]

]

+0.246

[

[

[

[

[

[

�0.500

0.866

]

]

]

]

]

]

.

The general problem of determining what description is more insightful is a key question arising

in linear algebra applications.

5. Vectors and matrices in data science

The above examples highlight some essential aspects of linear algebra in the context of data

science applications.

" Vectors organize information that cannot be expressed as a single number and for which

there exists a concept of scaling and addition.

" Matrices group together multiple vectors.

" The matrix-vector product expresses a linear combination of the column vectors of the

matrix.

" Solving a linear system Ax =b = Ib , to �nd x ��

m

for given b ��

m

, re-expresses the linear

combination

b =b

1

e

1

+ Å Å Å +b

m

e

m

, I = [ e

1

e

2

. . . e

m

],

as another linear combination

b =x

1

a

1

+x

2

a

2

+ . . .x

n

a

n

, A = [
a

1

a

2

. . . a

n

].

For certain problems the linear combination Ax might be more insightful, but the above

transformation is information-preserving, with b , x both having the same number of

components.

" Finding the best approximation of some given b ��

m

by a linear combination Ax of the

n column vectors of A ��

m×n

is known as a least squares problem and transforms the

information from the m components of b into n components of x , and knowledge of the

form of the column vectors. If m>n and the form of the columns of A can be succintly

stated, the transformation compresses information.

Data science seeks to extract regularity directly from available data, not necessarily invoking

any additional hypotheses. The typical scenario is that immense amounts of data are available,

with limited capability of human analysis. In this context it is apparent that the least squares

problem is of greater interest than solving a linear system with a square matrix. It should also

be clear that while computation by hand of small examples is useful to solidify theroretical

concepts, it is essential to become pro�cient in the use of so�ware that can deal with large data

sets, such as Julia.
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LINEARMAPPINGS

SYNOPSIS. Vectors have been introduced to represent complicated objects, whose description

requires m numbers, and the procedure of linear combination allows construction of new vec-

tors. Alternative insights into some object might be obtained by transformation of vectors. Of

all possible transformations those that are compatible with linear combinations are of special

interest. It turns out that matrices are not only important in organizing collections of vectors,

but also to represent such transformations, referred to as linear mappings.

1. Functions

1.1. Relations

The previous chapter focused on mathematical expression of the concept of quanti�cation, the

act of associating human observation with measurements, as a �rst step of scienti�c inquiry.

Consideration of di�erent types of quantities led to various types of numbers, vectors as group-

ings of numbers, and matrices as groupings of vectors. Symbols were introduced for these quan-

tities along with some intial rules for manipulating such objects, laying the foundation for an

algebra of vectors and matrices. Science seeks to not only observe, but to also explain, which

now leads to additional operations for working with vectors and matrices that will de�ne the

framework of linear algebra.

Explanations within scienti�c inquiry are formulated as hypotheses, from which predictions are

derived and tested. A widely applied mathematical transcription of this process is to organize

hypotheses and predictions as two sets X and Y , and then construct another set R of all of the

instances in which an element of X is associated with an element in Y . The set of all possible

instances of x �X and y �Y , is the Cartesian product of X with Y , denoted as X ×Y ={(x ,y)|x �X ,

y � Y}, a construct already encountered in the de�nition of the real 2-space �

2

= (�

2

,�, +, Å)

where �

2

=� ×�. Typically, not all possible tuples (x , y) � X × Y are relevant leading to the

following de�nition.

DEFINITION. (RELATION) . A relation R between two sets X ,Y is a subset of the Cartesian product

X ×Y, R

�

�

X ×Y.

The key concept is that of associating an input x �X with an output y �Y . Inverting the approach

and associating an output to an input is also useful, leading to the de�nition of an inverse rela-

tion as R

�1

�

�

Y ×X , R

�1

= {(y ,x) | (x ,y)�R}. Note that an inverse exists for any relation, and the

inverse of an inverse is the original relation, (R

�1

)

�1

=R. From the above, a relation is a triplet (a

tuple with three elements), (X ,Y ,R), that will o�en be referred to by just its last member R.
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Homogeneous relations. Many types of relations are de�ned in mathematics and encoun-

tered in linear algebra, and establishing properties of speci�c relations is an important task

within data science. A commonly encountered type of relationship is from a set onto itself,

known as a homogeneous relation. For homogeneous relations H

�

�

A×A, it is common to replace

the set membership notation (a,b)�H to state that a�A is in relationship H with b �A, with a

binary operator notation a
<
<

<

H

b. Familiar examples include the equality and less than relation-

ships between reals, E ,L

�

�

�×�, in which (a,b)�E is replaced by a=b, and (a,b)�L is replaced

by a<b. The equality relationship is its own inverse, and the inverse of the less than relationship

is the greater than relation G

�

�

�×�, G =L

�1

, a <bÒb >a.

1.2. Functions

Functions between sets X and Y are a speci�c type of relationship that o�en arise in science. For

a given input x �X , theories that predict a single possible output y �Y are of particular scienti�c

interest.

DEFINITION. (FUNCTION) . A function from set X to set Y is a relation F

�

�

X ×Y, that associates to

x �X a single y �Y.

The above intuitive de�nition can be transcribed in precise mathematical terms as F

�

�

X ×Y is a

function if (x ,y)�F and (x ,z)�F implies y =z . Since it's a particular kind of relation, a function

is a triplet of sets (X , Y , F), but with a special, common notation to denote the triplet by f :

X�Y , with F = {(x , f (x))|x �X , f (x)�Y} and the property that (x ,y)�FÒy = f (x). The set

X is the domain and the set Y is the codomain of the function f . The value from the domain

x �X is the argument of the function associated with the function value y = f (x). The function

value y is said to be returned by evaluation y = f (x). The previously de�ned relations R, P , I

are functions but S = {(a,±), (a, ²), (a, ³)} is not. All relations can be inverted, and inversion

of a function de�nes a new relation, but which might not itself be a function. For example the

relation S

�1

={(± ,a),(² ,a),(³ ,a)} is a function, but its inverse (S

�1

)

�1

=S is not.

Familiar functions include:

" the trigonometric functions cos:�� [�1, 1], sin:�� [�1, 1] that for argument ¸ ��

return the function values cos(¸), sin(¸) giving the Cartesian coordinates (x ,y)��

2

of

a point on the unit circle at angular extent ¸ from the x-axis;

" the exponential and logarithm functions exp:���, log:(0,�)��, as well as power and

logarithm functions in some other base a;

" polynomial functions p

n

:���, de�ned by a succession of additions and multiplications

p

n

(x)=a

n

x

n

+a

n�1

x

n�1

+ Å Å Å +a

1

x +a

0

=y

i=0

n

a

i

x

i

= ((a

n

x +a

n�1

)x + Å Å Å +a

1

)x +a

0

.

Simple functions such as sin, cos, exp, log, are prede�ned in Octave, and when given a vector

argument return the function applied to each vector component.

octave] disp(cos(0:pi/4:pi))

1.0000e+00 7.0711e-01 6.1232e-17 -7.0711e-01 -1.0000e+00
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octave] y=log2(1:8); disp(y)

0.00000 1.00000 1.58496 2.00000 2.32193 2.58496 2.80735

3.00000

octave] disp(pow2(y))

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

octave] a=[1 0 -1]; x=-2:2; y=polyval(a,x); disp(y)

3 0 -1 0 3

octave]

As seen previously, a Euclidean space E

m

=(�

m

,�,+, Å) can be used to suggest properties of more

complex spaces such as the vector space of continuous functions �

0

(�). A construct that will

be o�en used is to interpret a vector within E

m

as a function, since v ��

m

with components

v =[
v

1

v

2

. . . v

m

]

T

also de�nes a function v :{1,2,...,m}��, with values v(i)=v

i

. As the number

of components grows the function v can provide better approximations of some continuous

function f ��

0

(�) through the function values v

i

=v(i)= f (x

i

) at distinct sample points x

1

,x

2

,...,

x

m

.

The above function examples are all de�ned on a domain of scalars or naturals and returned

scalar values. Within linear algebra the particular interest is on functions de�ned on sets of

vectors from some vector space ± = (V , S, +, Å) that return either scalars f :V� S, or vectors

from some other vector space ² = (W , S, +, Å), g :V �W . The codomain of a vector-valued

function might be the same set of vectors as its domain, h :V�V . The fundamental operation

within linear algebra is the linear combination au + bv with a, b � S, u , v �V . A key aspect is

to characterize how a function behaves when given a linear combination as its argument, for

instance f (au +bv) or g(au +bv).

1.3. Linear functionals

Consider �rst the case of a function de�ned on a set of vectors that returns a scalar value. These

can be interpreted as labels attached to a vector, and are very o�en encountered in applications

from natural phenomena or data analysis.

DEFINITION. (FUNCTIONAL) . A functional on vector space ±= (V ,S, +, Å) is a function from the set

of vectors V to the set of scalars S of the vector space±.

DEFINITION. (LINEAR FUNCTIONAL) . The functional f :V� S on vector space ±= (V , S, +, Å) is a

linear functional if for any two vectors u ,v �V and any two scalars a,b

f (au +bv)=af (u)+bf (v). (1.20)

Many di�erent functionals may be de�ned on a vector space ±= (V , S, +, Å), and an insightful

alternative description is provided by considering the set of all linear functionals, that will be

denoted as V

�

={ f | f :V�S}. These can be organized into another vector space±

�

=(V

�

,S,+, Å)

with vector addition of linear functionals f ,g �V

�

and scaling by a�S de�ned by

( f +g)(u)= f (u)+g(u), (af )(u)=af (u), u �V . (1.21)
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DEFINITION. (DUAL VECTOR SPACE) . For some vector space±, the vector space of linear functionals

±

�

is called the dual vector space.

As is o�en the case, the above abstract de�nition can better be understood by reference to the

familiar case of Euclidean space. Consider �

2

= (�

2

,�, +, Å), the set of vectors in the plane with

x ��

2

the position vector from the origin (0,0) to point X in the plane with coordinates (x

1

,x

2

).

One functional from the dual space �

2

�

is f

2

(x) = x

2

, i.e., taking the second coordinate of the

position vector. The linearity property is readily veri�ed. For x , y ��

2

, a,b ��,

f

2

(ax +by)=ax

2

+by

2

=af

2

(x)+bf

2

(y).

Given some constant value h��, the curves within the plane de�ned by f

2

(x)=h are called the

contour lines or level sets of f

2

. Several contour lines and position vectors are shown in Figure

1.3. The utility of functionals and dual spaces can be shown by considering a simple example

from physics. Assume that x

2

is the height above ground level and a vector x is the displacement

of a body of mass m in a gravitational �eld. The mechanical work done to li� the body from

ground level to height h isW =mgh with g the gravitational acceleration. The mechanical work

is the same for all displacements x that satisfy the equation f

2

(x) =h. The work expressed in

units mg�h can be interpreted as the number of contour lines f

2

(x)=n�h intersected by the

displacement vector x . This concept of duality between vectors and scalar-valued functionals

arises throughout mathematics, the physical and social sciences and in data science. The term

�duality� itself comes from geometry. A point X in �

2

with coordinates (x

1

, x

2

) can be de�ned

either as the end-point of the position vector x , or as the intersection of the contour lines of two

funtionals f

1

(x)=x

1

and f

2

(x)=x

2

. Either geometric description works equally well in specifying

the position of X , so it might seem redundant to have two such procedures. It turns out though

that many quantities of interest in applications can be de�ned through use of both descriptions,

as shown in the computation of mechanical work in a gravitational �eld.

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.3. Vectors in E

2

and contour lines of the functional f (x)=x

2

1.4. Linear mappings

Consider now functions f :V�W from vector space ± = (V , S, +, Å) to another vector space

² = (W , T , +, Å). As before, the action of such functions on linear combinations is of special

interest.
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DEFINITION. (LINEAR MAPPING) . A function f :V�W, from vector space ±= (V ,S, +, Å) to vector

space²=(W ,S,�,F

.

) is called a linear mapping if for any two vectors u ,v �V and any two scalars

a,b �S

f (au +bv)=af (u)+bf (v). (1.22)

The image of a linear combination au +bv through a linear mapping is another linear combina-

tion af (u)+bf (v), and linear mappings are said to preserve the structure of a vector space, and

called homomorphisms in mathematics. The codomain of a linear mapping might be the same

as the domain in which case the mapping is said to be an endomorphism.

Matrix-vector multiplication has been introduced as a concise way to specify a linear combina-

tion

f (x)=Ax =x

1

a

1

+ Å Å Å +x

n

a

n

,

with a

1

, . . . , a

n

the columns of the matrix, A = [ a

1

a

2

. . . a

n

]. This is a linear mapping between

the real spaces �

m

, �

n

, f :�

m

��

n

, and indeed any linear mapping between real spaces can be

given as a matrix-vector product.

2. Measurements

Vectors within the real space �

m

can be completely speci�ed by m real numbers, even though

m is large in many realistic applications. A vector within �

0

(�), i.e., a continuous function

de�ned on the reals, cannot be so speci�ed since it would require an in�nite, non-countable

listing of function values. In either case, the task of describing the elements of a vector space

±=(V ,S, +, Å) by simpler means arises. Within data science this leads to classi�cation problems

in accordance with some relevant criteria.

2.1. Equivalence classes

Many classi�cation criteria are scalars, de�ned as a scalar-valued function f :±�S on a vector

space, ± = (V , S, +, Å). The most common criteria are inspired by experience with Euclidean

space. In a Euclidean-Cartesian model (�

2

,�, +, Å) of the geometry of a plane  , a point O �

  is arbitrarily chosen to correspond to the zero vector 0 = [ 0 0 ]

T

, along with two preferred

vectors e

1

, e

2

grouped together into the identity matrix I . The position of a point X �  with

respect to O is given by the linear combination

x = Ix +0=[
e

1

e

2

]

[

[

[

[

[

[

x

1

x

2

]

]

]

]

]

]

=x

1

e

1

+x

2

e

2

.

Several possible classi�cations of points in the plane are depicted in Figure 1.4: lines, squares,

circles. Intuitively, each choice separates the plane into subsets, and a given point in the plane

belongs to just one in the chosen family of subsets. A more precise characterization is given by

the concept of a partition of a set.

DEFINITION. (PARTITION) . A partition of a set is a grouping of its elements into non-empty subsets

such that every element is included in exactly one subset.
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In precise mathematical terms, a partition of set S is P = {S

i

| S

i

�P ,S

i

`�, i � I} such that �x �S,

�! j � I for which x �S

j

. Since there is only one set (�! signi�es �exists and is unique�) to which

some given x � S belongs, the subsets S

i

of the partition P are disjoint, i ` jÒ S

i

) S

j

=�. The

subsets S

i

are labeled by i within some index set I. The index set might be a subset of the

naturals, I �� in which case the partition is countable, possibly �nite. The partitions of the plane

suggested by Figure 1.4 are however indexed by a real-valued label, i �� with I ��.

A technique which is o�en used to generate a partition of a vector space ± = (V , S, +, Å) is to

de�ne an equivalence relation between vectors, H

�

�

V ×V . For some element u �V , the equiv-

alence class of u is de�ned as all vectors v that are equivalent to u , {v | (u , v)�H }. The set of

equivalence classes of is called the quotient set and denoted as V /H, and the quotient set is a

partition of V . Figure 1.4 depicts four di�erent partitions of the plane. These can be interpreted

geometrically, such as parallel lines or distance from the origin. With wider implications for

linear algebra, the partitions can also be given in terms of classi�cation criteria speci�ed by

functions.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1.4. Equivalence classes within the plane

2.2. Norms

The partition of �

2

by circles from Figure 1.4 is familiar; the equivalence classes are sets of

points whose position vector has the same size, {x =[
x

1

x

2

]

T

| (x

1

2

+x

2

2

)

1/2

= r}, or is at the same

distance from the origin. Note that familiarity with Euclidean geometry should not obscure

the fact that some other concept of distance might be induced by the data. A simple example is

statement of walking distance in terms of city blocks, in which the distance from a starting point

to an address x

1

=3 blocks east and x

2

=4 blocks north is x

1

+x

2

=7 city blocks, not the Euclidean

distance (x

1

2

+x

2

2

)

1/2

=5 since one cannot walk through the buildings occupying a city block.

The above observations lead to the mathematical concept of a norm as a tool to evaluate vector

magnitude. Recall that a vector space is speci�ed by two sets and two operations,±=(V ,S,+, Å),

and the behavior of a norm with respect to each of these components must be de�ned. The

desired behavior includes the following properties and formal de�nition.

Unique value. The magnitude of a vector v �V should be a unique scalar, requiring the def-

inition of a function. The scalar could have irrational values and should allow ordering

of vectors by size, so the function should be from V to �, f :V��. On the real line the

point at coordinate x is at distance |x | from the origin, and to mimic this usage the norm

of v �V is denoted as �v �, leading to the de�nition of a function � �:V��

+

, �

+

={a|a��,

a �0}.
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Null vector case. Provision must be made for the only distinguished element of V , the null

vector 0. It is natural to associate the null vector with the null scalar element, �0�=0. A

crucial additional property is also imposed namely that the null vector is the only vector

whose norm is zero, �v�=0Ò v =0. From knowledge of a single scalar value, an entire

vector can be determined. This property arises at key junctures in linear algebra, notably

in providing a link to another branch of mathematics known as analysis, and is needed to

establish the fundamental theorem of linear algbera or the singular value decomposition

encountered later.

Scaling. Transfer of the scaling operation v =au property leads to imposing �v �= |a|�u �. This

property ensures commensurability of vectors, meaning that the magnitude of vector v

can be expressed as a multiple of some standard vector magnitude �u �.

Vector addition. Position vectors from the origin to coordinates x ,y >0 on the real line can

be added and |x +y |= |x |+ |y |. If however the position vectors point in di�erent directions,

x > 0, y < 0, then |x + y | < |x | + |y |. For a general vector space the analogous property is

known as the triangle inequality , �u +v�� �u �+ �v � for u ,v �V .

DEFINITION. (NORM) . A norm on the vector space±=(V ,S, +, Å) is a function � �:V��

+

that for

u ,v �V, a�S satis�es:

1. �v�=0Òv =0;

2. �au �= |a| �u �;

3. �u +v�� �u �+ �v �.

Note that the norm is a functional, but the triangle inequality implies that it is not generally

a linear functional. Returning to Figure 1.4, consider the functions f

i

:�

2

��

+

de�ned for x =

[
x

1

x

2

]

T

through values

f

1

(x)= |x

1

|, f

2

(x)= |x

2

|, f

3

(x)= |x

1

|+ |x

2

|, f

4

(x)=(|x

1

|

2

+ |x

2

|

2

)

1/2

.

Sets of constant value of the above functions are also equivalence classes induced by the equiv-

alence relations E

i

for i =1, 2, 3, 4.

1. f

1

(x)=cÒ |x

1

|=c, E

1

={(x , y)| f

1

(x)= f

1

(y)Ô |x

1

|= |y

1

| }

�

�

�

2

×�

2

;

2. f

2

(x)=cÒ |x

2

|=c, E

2

={(x , y)| f

2

(x)= f

2

(y)Ô |x

2

|= |y

2

| }

�

�

�

2

×�

2

;

3. f

3

(x)=cÒ |x

1

|+ |x

2

|= c, E

3

= {(x , y)| f

3

(x)= f

3

(y)Ô |x

1

|+ |x

2

|= |y

1

|+ |y

2

| }

�

�

�

2

×�

2

;

4. f

4

(x)=cÒ(|x

1

|

2

+ |x

2

|

2

)

1/2

=c, E

4

={(x , y)| f

4

(x)= f

4

(y)Ô(|x

1

|

2

+ |x

2

|

2

)

1/2

=(|y

1

|

2

+ |y

2

|

2

)

1/2

}

�

�

�

2

×�

2

.

These equivalence classes correspond to the vertical lines, horizontal lines, squares, and circles

of Figure 1.4. Not all of the functions f

i

are norms since f

1

(x) is zero for the non-null vector

x = [
0 1

]

T

, and f

2

(x)is zero for the non-null vector x = [
1 0

]

T

. The functions f

3

and f

4

are

indeed norms, and speci�c cases of the following general norm.

DEFINITION. (p-NORM IN �

m

) . The p-norm on the real vector space �

m

=(�

m

,�,+, Å) for p�1 is the

function � �

p

:V��

+

with values �x �

p

=(|x

1

|

p

+ |x

2

|

p

+ Å Å Å + |x

m

|

p

)

1/p

, or

�x �

p

=

(

(

(

(

(

(

(

(

(

(

y

i=1

m

|x

i

|

p

)

)

)

)

)

)

)

)

)

)

1/p

for x ��

m

. (1.23)
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Denote by x

i

the largest component in absolute value of x ��

m

. As p increases, |x

i

|

p

becomes

dominant with respect to all other terms in the sum suggesting the de�nition of an inf-norm by

�x�

�

=max

1�i�m

|x

i

| .

This also works for vectors with equal components, since the fact that the number of compo-

nents is �nite while p�� can be used as exempli�ed for x =[
a a . . . a

]

T

, by �x �

p

=(m |a|

p

)

1/p

=

m

1/p

|a|, with m

1/p

�1.

Note that the Euclidean norm corresponds to p=2, and is o�en called the 2-norm. The analogy

between vectors and functions can be exploited to also de�ne a p-norm for�

0

[a,b]=(C([a,b]),

�, +, Å) , the vector space of continuous functions de�ned on [a,b].

DEFINITION. (p-NORM IN �

0

[a,b]) . The p-norm on the vector space of continuous functions �

0

[a,

b] for p�1 is the function � �

p

:V��

+

with values

� f �

p

=Ç5

a

b

| f (x)|

p

dxÈ

1/p

, for f �C[a,b]. (1.24)

The integration operation +

a

b

can be intuitively interpreted as the value of the sum �

i=1

m

from

equation (1.23) for very large m and very closely spaced evaluation points of the function f (x

i

),

for instance |x

i+1

�x

i

|= (b �a)/m. An inf-norm can also be de�ne for continuous functions by

� f �

�

= sup

x �[a,b]

| f (x)|,

where sup, the supremum operation can be intuitively understood as the generalization of the

max operation over the countable set {1, 2, . . . ,m} to the uncountable set [a,b].
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-0.5

0.0

0.5

1.0

Figure 1.5. Regions within �

2

for which �x �

p

�1, for p=1,2, 3,�.

Vector norms arise very o�en in applications, especially in data science since they can be used

to classify data, and are implemented in so�ware systems such as Octave in which the norm

function with a single argument computes the most commonly encountered norm, the 2-norm.

If a second argument p is speci�ed the p-norm is computed.

octave] x=[1; 1; 1]; disp([norm(x) sqrt(3)])

1.7321 1.7321

octave] m=9; x=ones(m,1); disp([norm(x) sqrt(m)])

3 3
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octave] m=4; x=ones(m,1); disp([norm(x,1) m])

4 4

octave] disp([norm(x,1) norm(x,2) norm(x,4) norm(x,8) norm(x,16) norm(x,inf)])

4.0000 2.0000 1.4142 1.1892 1.0905 1.0000

octave]

2.3. Inner product

Norms are functionals that de�ne what is meant by the size of a vector, but are not linear. Even

in the simplest case of the real line, the linearity relation |x +y |= |x |+ |y | is not veri�ed for x >0,

y < 0. Nor do norms characterize the familiar geometric concept of orientation of a vector. A

particularly important orientation from Euclidean geometry is orthogonality between two vec-

tors. Another function is required, but before a formal de�nition some intuitive understanding

is sought by considering vectors and functionals in the plane, as depicted in Figure 1.6. Consider

a position vector x =[
x

1

x

2

]

T

��

2

and the previously-encountered linear functionals

f

1

, f

2

:�

2

��, f

1

(x)=x

1

, f

2

(x)=x

2

.

The x

1

component of the vector x can be thought of as the number of level sets of f

1

times it

crosses; similarly for the x

2

component. A convenient labeling of level sets is by their normal

vectors. The level sets of f

1

have normal e

1

T

= [ 1 0 ], and those of f

2

have normal vector e

2

T

=

[
0 1

]. Both of these can be thought of as matrices with two columns, each containing a single

component. The products of these matrices with the vector x gives the value of the functionals

f

1

, f

2

e

1

T

x = [
1 0

]

[

[

[

[

[

[

x

1

x

2

]

]

]

]

]

]

=1 Åx

1

+0 Åx

2

=x

1

= f

1

(x),

e

2

T

x =[ 0 1 ]

[

[

[

[

[

[

x

1

x

2

]

]

]

]

]

]

=0 Åx

1

+1 Åx

2

=x

1

= f

2

(x).

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6
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1.0

Figure 1.6. Euclidean space E

2

and its dual E

2

�

.

In general, any linear functional f de�ned on the real space �

m

can be labeled by a vector

a

T

= [ a

1

a

2

. . . a

m

],
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and evaluated through the matrix-vector product f (x) = a

T

x . This suggests the de�nition of

another function s:�

m

×�

m

��,

s(a ,x)=a

T

x .

The function s is called an inner product , has two vector arguments from which a matrix-vector

product is formed and returns a scalar value, hence is also called a scalar product . The de�nition

from an Euclidean space can be extended to general vector spaces. For now, consider the �eld

of scalars to be the reals S =�.

DEFINITION. (INNER PRODUCT) . An inner product in the vector space±=(V ,�, +, Å) is a function s:

V ×V�� with properties

Symmetry. For any a ,x �V, s(a ,x)= s(x ,a ).

Linearity in second argument. For any a ,x , y �V, ± ,² ��, s(a ,±x +²y)=±s(a ,x)+²s(a , y).

Positive de�niteness. For any x �V \{0}, s(x ,x)>0.

The inner product s(a ,x) returns the number of level sets of the functional labeled by a crossed

by the vector x , and this interpretation underlies many applications in the sciences as in the

gravitational �eld example above. Inner products also provide a procedure to evaluate geomet-

rical quantities and relationships.

Vector norm. In �

m

the number of level sets of the functional labeled by x crossed by x

itself is identical to the square of the 2-norm

s(x ,x)=x

T

x = �x�

2

2

.

In general, the square root of s(x ,x) satis�es the properties of a norm, and is called the

norm induced by an inner product

�x �= s(x ,x)

1/2

.

A real space together with the scalar product s(x , y)= x

T

y and induced norm �x �= s(x ,

x)

1/2

de�nes an Euclidean vector space 0

m

.

Orientation. In 0

2

the point speci�ed by polar coordinates (r ,¸) has the Cartesian coordi-

nates x

1

= r cos¸ , x

2

= r sin¸ , and position vector x =[ x

1

x

2

]

T

. The inner product

e

1

T

x =[
1 0

] [

x

1

x

2

]=1 Åx

1

+0 Åx

2

= r cos¸ ,

is seen to contain information on the relative orientation of x with respect to e

1

. In

general, the angle ¸ between two vectors x , y with any vector space with a scalar product

can be de�ned by

cos¸ =

s(x , y)

[s(x ,x) s(y , y)]

1/2

=

s(x , y)

�x � �y �

,

which becomes

cos¸ =

x

T

y

�x � �y �

,

in a Euclidean space, x , y ��

m

.
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Orthogonality. In 0

2

two vectors are orthogonal if the angle between them is such that

cos¸ =0, and this can be extended to an arbitrary vector space±=(V ,�,+, Å)with a scalar

product by stating that x , y �V are orthogonal if s(x , y)=0. In 0

m

vectors x , y ��

m

are

orthogonal if x

T

y =0.

3. Linear mapping composition

3.1. Matrix-matrix product

From two functions f :A�B and g:B�C, a composite function, h=g � f , h:A�C is de�ned by

h(x)=g( f (x)).

Consider linear mappings between Euclidean spaces f :�

n

��

m

, g :�

m

��

p

. Recall that linear

mappings between Euclidean spaces are expressed as matrix vector multiplication

f (x)=Ax , g(y)=By ,A ��

m×n

,B ��

p×m

.

The composite function h = g � f is h :�

n

��

p

, de�ned by

h(x)= g(f (x))= g(Ax)=BAx .

Note that the intemediate vector u =Ax is subsequently multiplied by the matrix B . The com-

posite function h is itself a linear mapping

h(ax + by) =BA(ax + by) =B (aA x + bAy) =B (au + bv) = aBu + bBv = aBAx + bBAy = ah(x)+

bh(y),

so it also can be expressed a matrix-vector multiplication

h(x)=Cx =BAx . (1.25)

Using the above, C is de�ned as the product of matrix B with matrix A

C =BA .

The columns of C can be determined from those of A by considering the action of h on the the

column vectors of the identity matrix I =[ e

1

e

2

. . . e

n

]��

n×n

. First, note that

Ae

j

= [
a

1

a

2

. . . a

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

0

Å

Å

Å

Å

Å

Å

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= a

1

, . . . , Ae

j

= [
a

1

a

2

. . . a

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

Å

Å

Å

1

Å

Å

Å

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= a

j

, Ae

n

= [
a

1

a

2

. . . a

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

Å

Å

Å

Å

Å

Å

0

1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

a

n

. (1.26)

The above can be repeated for the matrix C = [ c

1

c

2

. . . c

n

] giving

h(e

1

)=Ce

1

= c

1

, . . . ,h(e

j

)=Ce

j

= c

j

, . . . ,h(e

n

)=Ce

n

= c

n

. (1.27)

Combining the above equations leads to c

j

=Ba

j

, or

C =[ c

1

c

2

. . . c

n

]=B [ a

1

a

2

. . . a

n

].
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From the above the matrix-matrix product C = BA is seen to simply be a grouping of all the

products of B with the column vectors of A,

C = [
c

1

c

2

. . . c

n

]=[B
a

1

Ba

2

. . . Ba

n

]

Matrix-vector and matrix-matrix products are implemented in Octave, the above results can

readily be veri�ed.

octave] a1=[1; 2]; a2=[3; 4]; A=[a1 a2]

A =

1 3

2 4

octave] b1=[-1; 1; 3]; b2=[2; -2; 3]; B=[b1 b2]

B =

-1 2

1 -2

3 3

octave] C=B*A

C =

3 5

-3 -5

9 21

octave] c1=B*a1; c2=B*a2; [c1 c2]

ans =

3 5

-3 -5

9 21

octave]
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CHAPTER 2

VECTOR SPACES

FORMAL RULES

1. Algebraic structures

1.1. Typical structures

A vector space has been introduced as a 4-tuple ±= (V , S, +, Å) with speci�c behavior of the vector addition and

scaling operations. Arithmetic operations between scalars were implicitly assumed to be similar to those of the

real numbers, but also must be speci�ed to obtain a complete de�nition of a vector space. Algebra de�nes various

structures that specify the behavior operations with objects. Knowledge of these structures is useful not only in

linear algebra, but also in other mathematical approaches to data analysis such as topology or geometry.

Groups. A group is a 2-tuple ¢= (G, +) containing a

setG and an operation +with properties from Table 2.2.

If �a,b �G, a+b =b +a, the group is said to be commu-

tative. Besides the familiar example of integers under

addition ($, +), symmetry groups that specify spatial

or functional relations are of particular interest. The

rotations by 0,

À

2

, À ,

3À

2

or vertices of a square form a

group.

Addition rules

a+b �G Closure

a+ (b + c)= (a+b)+ c Associativity

0+a=a Identity element

a+ (�a)=0 Inverse element

Table 2.1. Group ¢= (G , +) properties, for �a,b, c �G

Rings. A ring is a 3-tuple � = (R, +, Å) containing a set

R and two operations +, Å with properties from Table

2.1. As is o�en the case, a ring is more complex struc-

ture built up from simpler algebraic structures. With

respect to addition a ring has the properties of a com-

mutative group. Only associativity and existence of an

identity element is imposed for multiplication. Matrix

addition and multiplication has the structure of ring

(�

m×m

, +, Å).

Addition rules

(R, +) is a commutative (Abelian) group

Multiplication rules

a Åb �R Closure

(a Åb) Å c =a Å (b Å c) Associativity

a Å1=1 Åa=a Identity element

Distributivity

a Å (b + c)= (a Åb)+(a Å c) on the le�

(a+b) Å c = (a Å c)+(b Å c) on the right

Table 2.2. Ring �=(R, +, Å) properties, for �a,b, c �R.

Fields. A ring is a 3-tuple 1= (F , +, Å) containing a set

F and two operations +, Å, each with properties of a

commutative group, but with special behavior for the

inverse of the null element. The multiplicative inverse

is denoted as a

�1

. Scalars S in the de�nition of a vector

space must satisfy the properties of a �eld. Since the

operations are o�en understood from context a �eld

might be referred to as the full 3� tuple, or, more con-

cisely just through the set of elements as in the de�ni-

tion of a vector space.

35



Addition rules

(F , +) is a commutative (Abelian) group

Multiplication rules

(F , Å) is a commutative group except

that 0

�1

does not exist

Distributivity

a Å (b + c)= (a Åb)+(a Å c)

Table 2.3. Field �= (F , +, Å) properties, for �a,b, c �F .

Using the above de�nitions, a vector space±=(V ,S,+, Å) can be described as a commutative group (V ,+) combined

with a �eld S that satis�es the scaling properties au �V , a(u +v )=au +av , (a+b)u =au +bu , a(bu)=(ab)u , 1u =u ,

for �a,b �S, �u ,v �V .

1.2. Vector subspaces

A central interest in data science is to seek simple description of complex objects. A typical situation is that many

instances of some object of interest are initially given as an m-tuple v ��

m

with large m. Assuming that addition

and scaling of such objects can cogently be de�ned, a vector space is obtained, say over the �eld of reals with an

Euclidean distance, E

m

. Examples include for instance recordings of medical data (electroencephalograms, elec-

trocardiograms), sound recordings, or images, for which m can easily reach in to the millions. A natural question

to ask is whether all the m real numbers are actually needed to describe the observed objects, or perhaps there is

some intrinsic description that requires a much smaller number of descriptive parameters, that still preserves the

useful idea of linear combination. The mathematical transcription of this idea is a vector subspace.

DEFINITION. (VECTOR SUBSPACE) . °= (U ,S, +, Å), U `�, is a vector subspace of vector space ±= (V ,S, +, Å) over the

same �eld of scalars S, denoted by °d±, if U

�

�

V and �a,b �S, �u ,v �U, the linear combination au +bv �U.

The above states a vector subspace must be closed under linear combination, and have the same vector addition

and scaling operations as the enclosing vector space. The simplest vector subspace of a vector space is the null

subspace that only contains the null element, U = {0}. In fact any subspace must contain the null element 0, or

otherwise closure would not be veri�ed for the particular linear combination u + (�u)=0. If U �V , then ° is said

to be a proper subspace of±, denoted by °<±.

Setting n �m components equal to zero in the real space �

m

de�nes a proper subspace whose elements can be

placed into a one-to-one correspondence with the vectors within �

n

. For example, setting component m of x ��

m

equal to zero gives x = [ x

1

x

2

. . . x

m�1

0 ]

T

that while not a member of �

m�1

, is in a one-to-one relation with

x

¹

= [
x

1

x

2

. . . x

m�1

]

T

��

m�1

. Dropping the last component of y ��

m

, y = [
y

1

y

2

. . . y

m�1

y

m

]

T

gives vector y

¹

=

[ y

1

y

2

. . . y

m�1

]��

m�1

, but this is no longer a one-to-one correspondence since for some given y

¹

, the last com-

ponent y

m

could take any value.

octave] m=3; x=[1; 2; 0]; xp=x(1:2); disp(xp)

1

2

octave] y=[1; 2; 3]; yp=y(1:2); disp(yp)

1

2

octave]
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Vector subspaces arise in decomposition of a vector space. The converse, composition of vector spaces ° = (U ,

S, +, Å) ±= (V ,S, +, Å) is also de�ned in terms of linear combination. A vector x ��

3

can be obtained as the linear

combination

x =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

x

3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

0

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

x

2

x

3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

but also as

x =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

x

3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

�a

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0

a

x

3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

for some arbitrary a ��. In the �rst case, x is obtained as a unique linear combination of a vector from the set

U = �¡

x

1

0 0

¢

T

| x

1

��  with a vector from V = {[
0 x

2

x

3

]

T

| x

2

, x

3

��}. In the second case, there is an in�nity of

linear combinations of a vector from V with another from W = �¡

x

1

x

2

0

¢

T

| x

1

, x

2

��  to the vector x . This is

captured by a pair of de�nitions to describe vector space composition.

DEFINITION. Given two vector subspaces °=(U ,S,+, Å),±=(V ,S,+, Å) of the space²=(W ,S,+, Å), the sum is the vector

space °+±= (U +V ,S, +, Å), where the sum of the two sets of vectors U ,V is U +V = {u +v | u �U ,v �V}.

DEFINITION. Given two vector subspaces °=(U ,S,+, Å),±=(V ,S,+, Å) of the space²=(W ,S,+, Å), the direct sum is the

vector space °�±=(U �V ,S,+, Å), where the direct sum of the two sets of vectors U ,V is U�V ={u +v | �!u �U ,�!v �V}.

(unique decomposition)

Since the same scalar �eld, vector addition, and scaling is used , it is more convenient to refer to vector space sums

simply by the sum of the vector sets U +V , or U �V , instead of specifying the full tuplet for each space. This shall

be adopted henceforth to simplify the notation.

octave] u=[1; 0; 0]; v=[0; 2; 3]; vp=[0; 1; 3]; w=[1; 1; 0]; disp([u+v vp+w])

1 1

2 2

3 3

octave]

In the previous example, the essential di�erence between the two ways to express x ��

3

is that U )V = {0}, but

V )W = {[ 0 a 0 ]

T

|a��}` {0}, and in general if the zero vector is the only common element of two vector spaces

then the sum of the vector spaces becomes a direct sum. In practice, the most important procedure to construct

direct sums or check when an intersection of two vector subspaces reduces to the zero vector is through an inner

product.

DEFINITION. Two vector subspaces U ,V of the real vector space �

m

are orthogonal, denoted as U¥V if u

T

v =0 for any

u �U ,v �V.

DEFINITION. Two vector subspaces U,V of U +V are orthogonal complements, denoted U =V

¥

, V =U

¥

if they are orthog-

onal subspaces, U¥V, and U )V = {0}, i.e., the null vector is the only common element of both subspaces.

octave] disp([u'*v vp'*w])

0 1

octave]
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The above concept of orthogonality can be extended to other vector subspaces, such as spaces of functions. It can

also be extended to other choices of an inner product, in which case the term conjugate vector spaces is sometimes

used.

The concepts of sum and direct sum of vector spaces used linear combinations of the form u + v . This notion can

be extended to arbitrary linear combinations.

DEFINITION. In vector space ±= (V ,S, +, Å), the span of vectors a

1

, a

2

, . . . , a

n

�V , is the set of vectors reachable by linear

combination

span{a

1

, a

2

, . . . , a

n

}={b �V | �x

1

, . . . ,x

n

�S suchthat b =x

1

a

1

+ . . . +x

n

a

n

}.

Note that for real vector spaces a member of the span of the vectors {a

1

,a

2

, . . . ,a

n

} is the vector b obtained from the

matrix vector multiplication

b =Ax = [ a

1

a

2

. . . a

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

Å

Å

Å

x

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

From the above, the span is a subset of the co-domain of the linear mapping f (x)=Ax .

2. Vector subspaces of a linear mapping

The wide-ranging utility of linear algebra essentially results a complete characterization of the behavior of a linear

mapping between vector spaces f :U�V , f (au +bv )=af (u)+bf (v ). For some given linear mapping the questions

that arise are:

1. Can any vector within V be obtained by evaluation of f ?

2. Is there a single way that a vector within V can be obtained by evaluation of f ?

Linear mappings between real vector spaces f :�

n

��

m

, have been seen to be completely speci�ed by a matrix

A ��

m×n

. It is common to frame the above questions about the behavior of the linear mapping f (x)=Ax through

sets associated with the matrix A. To frame an answer to the first question, a set of reachable vectors is first defined.

DEFINITION. The column space (or range) of matrix A ��

m×n

is the set of vectors reachable by linear combination of the

matrix column vectors

C(A)=range(A)={b ��

m

| �x ��

n

such thatb =Ax}.

By de�nition, the column space is included in the co-domain of the function f (x)=Ax , C(A)

�

�

�

m

, and is readily

seen to be a vector subspace of �

m

. The question that arises is whether the column space is the entire co-domain

C(A)=�

m

that would signify that any vector can be reached by linear combination. If this is not the case then the

column space would be a proper subset, C(A)��

m

, and the question is to determine what part of the co-domain

cannot be reached by linear combination of columns of A. Consider the orthogonal complement of C(A) de�ned

as the set vectors orthogonal to all of the column vectors of A, expressed through inner products as

a

1

T

y =0,a

2

T

y =0, . . . ,a

n

T

y =0.
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This can be expressed more concisely through the transpose operation

A = [
a

1

a

2

. . . a

n

],A

T

y =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

T

a

2

T

Å

Å

Å

a

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

y =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

T

y

a

2

T

y

Å

Å

Å

a

n

T

y

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

and leads to the de�nition of a set of vectors for which A

T

y =0

DEFINITION. The le� null space (or cokernel) of a matrix A ��

m×n

is the set

N(A

T

)=null(A

T

)={y ��

m

|A

T

y =0}.

Note that the le� null space is also a vector subspace of the co-domain of f (x) = Ax , N(A

T

)

�

�

�

m

. The above

de�nitions suggest that both the matrix and its transpose play a role in characterizing the behavior of the linear

mapping f =Ax , so analagous sets are de�ne for the transpose A

T

.

DEFINITION. The row space (or corange) of a matrix A ��

m×n

is the set

R(A)=C(A

T

)=range(A

T

)={c ��

n

| �y ��

m

c =A

T

y}

�

�

�

n

DEFINITION. The null space of a matrix A ��

m×n

is the set

N(A)=null(A)={x ��

n

|Ax =0}

�

�

�

n

Examples. Consider a linear mapping between real spaces f :�

n

��

m

, de�ned by y = f (x)=Ax = [
y

1

. . . y

n

]

T

,

with A ��

m×n

.

1. For n =1, m=3,

A =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1

0

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,A

T

= [
1 0 0

],

the column space C(A) is the y

1

-axis, and the

left null space N(A

T

) is the y

2

y

3

-plane. Vec-

tors that span these spaces are returned by the

Octave orth and null functions.

octave] A=[1; 0; 0]; disp(orth(A));

disp('-----'); disp(null(A'))

-1

-0

-0

-----

0 0

1 0

0 1

octave]

2. For n =2, m=3,

A =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 �1

0 0

0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= [
a

1

a

2

], A

T

=

[

[

[

[

[

[

1 0 0

�1 0 0

]

]

]

]

]

]

,

the columns of A are colinear, a

2

=�a

1

, and the

column space C(A) is the y

1

-axis, and the le�

null space N(A

T

) is the y

2

y

3

-plane, as before.

octave] A=[1 -1; 0 0; 0 0];

disp(orth(A));

disp('-----'); disp(null(A'))

-1.00000

-0.00000

-0.00000

-----

0 0

1 0

0 1
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octave]

3. For n =2, m=3,

A =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0

0 1

0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, A

T

=

[

[

[

[

[

[

1 0 0

0 1 0

]

]

]

]

]

]

,

the column space C(A) is the y

1

y

2

-plane, and

the le� null space N(A

T

) is the y

3

-axis.

octave] A=[1 0; 0 1; 0 0];

disp(orth(A));

disp('-----'); disp(null(A'))

-1 -0

-0 -1

-0 -0

-----

0

0

1

octave]

4. For n =2, m=3,

A =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1

1 �1

0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, A

T

=

[

[

[

[

[

[

1 1 0

1 �1 0

]

]

]

]

]

]

,

the same C(A), N(A

T

) are obtained, albeit with

a di�erent set of spanning vectors returned by

orth.

octave] A=[1 1; 1 -1; 0 0];

disp(orth(A));

disp('-----'); disp(null(A'))

0.70711 0.70711

0.70711 -0.70711

-0.00000 -0.00000

-----

0

0

1

octave]

5. For n =3, m=3,

A =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1 3

1 �1 �1

1 1 3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= [ a

1

a

2

a

3

],

A

T

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1 1

1 �1 1

3 �1 3

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

T

a

2

T

a

3

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,A

T

y =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

T

y

a

2

T

y

a

3

T

y

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

since a

3

= a

1

+ 2a

2

, the orthogonality condi-

tion A

T

y = 0 is satis�ed by vectors of form y =

[
a 0 �a

], a��.

octave] A=[1 1 3; 1 -1 -1; 1 1 3];

disp(orth(A));

disp('-----'); disp(null(A'))

0.69157 0.14741

-0.20847 0.97803

0.69157 0.14741

-----

0.70711

0.00000

-0.70711

octave]

The above low dimensional examples are useful to gain initial insight into the significance of the spacesC(A),N(A

T

).

Further appreciation can be gained by applying the same concepts to processing of images. A gray-scale image

of size p

x

by p

y

pixels can be represented as a vector with m =p

x

p

y

components, b � [0, 1]

m

��

m

. Even for a small

image with p

x

=p

y

=128 = 2

7

pixels along each direction, the vector b would have m = 2

14

components. An image

can be speci�ed as a linear combination of the columns of the identity matrix

b = Ib = [
e

1

e

2

. . . e

m

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

b

1

b

2

Å

Å

Å

b

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

with b

i

the gray-level intensity in pixel i. Similar to the inclined plane example from §1, an alternative description

as a linear combination of another set of vectors a

1

, . . . ,a

m

might be more relevant. One choice of greater utility for
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image processing mimics the behavior of the set {1, cos t, cos2t, . . . , sin t, sin2t, . . .} that extends the second example

in §1, would be for m=4

A = [
a

1

a

2

a

3

a

4

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 1 1 0

1 1 0 1

1 0 1 1

1 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

DATA REDUNDANCY

1. Linear dependence

For the simple scalar mapping f :���, f (x)=ax , the condition f (x)=0 implies either that a=0 or x =0. Note that

a=0 can be understood as de�ning a zero mapping f (x)=0. Linear mappings between vector spaces, f :U�V , can

exhibit di�erent behavior, and the condtion f (x)=Ax =0, might be satis�ed for both x `0, and A `0. Analogous to

the scalar case, A =0 can be understood as de�ning a zero mapping, f (x)=0.

In vector space ±= (V ,S, +, Å), vectors u ,v �V related by a scaling operation, v =au , a� S, are said to be colinear,

and are considered to contain redundant data. This can be restated as v � span{u}, from which it results that

span{u}=span{u ,v }. Colinearity can be expressed only in terms of vector scaling, but other types of redundancy

arise when also considering vector addition as expressed by the span of a vector set. Assuming that v 	 span{u},

then the strict inclusion relation span{u}�span{u ,v } holds. This strict inclusion expressed in terms of set concepts

can be transcribed into an algebraic condition.

DEFINITION. The vectors a

1

,a

2

, . . . ,a

n

�V ,are linearly dependent if there exist n scalars, x

1

, . . . ,x

n

�S, at least one of which

is di�erent from zero such that

x

1

a

1

+ . . . +x

n

a

n

=0.

Introducing a matrix representation of the vectors

A = [ a

1

a

2

. . . a

n

];x =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

x

2

Å

Å

Å

x

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

allows restating linear dependence as the existence of a non-zero vector, �x `0, such that Ax =0. Linear dependence

can also be written as Ax =0Ï x =0, or that one cannot deduce from the fact that the linear mapping f (x)=Ax

attains a zero value that the argument itself is zero. The converse of this statement would be that the only way to

ensure Ax =0 is for x =0, or Ax =0Òx =0, leading to the concept of linear independence.

DEFINITION. The vectors a

1

, a

2

, . . . , a

n

�V ,are linearly independent if the only n scalars, x

1

, . . . ,x

n

�S, that satisfy

x

1

a

1

+ . . . +x

n

a

n

=0, (2.1)

are x

1

=0, x

2

=0,...,x

n

=0.

2. Basis and dimension

Vector spaces are closed under linear combination, and the span of a vector set , = {a

1

, a

2

, . . . } de�nes a vector

subspace. If the entire set of vectors can be obtained by a spanning set, V =span,, extending , by an additional

element �=,*{b} would be redundant since span, = span�. This is recognized by the concept of a basis, and

also allows leads to a characterization of the size of a vector space by the cardinality of a basis set.
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DEFINITION. A set of vectors u

1

, . . . ,u

n

�V is a basis for vector space ±=(V ,S, +, Å) if

1. u

1

, . . . ,u

n

are linearly independent;

2. span{u

1

, . . . ,u

n

}=V.

DEFINITION. The number of vectors u

1

, . . . ,u

n

�V within a basis is the dimension of the vector space ±=(V ,S, +, Å).

3. Dimension of matrix spaces

The domain and co-domain of the linear mapping f :U�V , f (x)=Ax , are decomposed by the spaces associated

with the matrix A. When U =�

n

, V =�

m

, the following vector subspaces associated with the matrix A ��

m×n

have

been de�ned:

" C(A) the column space of A

" C(A

T

) the row space of A

" N(A) the null space of A

" N(A

T

) the le� null space of A, or null space of A

T

DEFINITION. The rank of a matrix A ��

m×n

is the dimension of its column space and is equal to the dimension of its row

space.

DEFINITION. The nullity of a matrix A ��

m×n

is the dimension of its null space.
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CHAPTER 3

FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

DATA INFORMATION

1. Partition of linear mapping domain and codomain

A partition of a set S has been introduced as a collection of subsets P ={S

i

|S

i

�P ,S

i

`�} such that any given element

x �S belongs to only one set in the partition. This is modi�ed when applied to subspaces of a vector space, and a

partition of a set of vectors is understood as a collection of subsets such that any vector except 0 belongs to only

one member of the partition.

Linear mappings between vector spaces f :U�V can be represented by matrices A with columns that are images

of the columns of a basis {u

1

,u

2

, . . . } of U

A = [ f (u

1

) f (u

2

) . . . ].

Consider the case of real �nite-dimensional domain and co-domain, f :�

n

��

m

, in which case A ��

m×n

,

A = [ f (e

1

) f (e

2

) . . . f (e

n

) ]= [ a

1

a

2

. . . a

n

].

The column space of A is a vector subspace of the codomain, C(A)d�

m

, but according to the de�nition of dimen-

sion if n <m there remain non-zero vectors within the codomain that are outside the range of A,

n <mÒ �v ��

m

,v `0,v 	C(A).

All of the non-zero vectors in N(A

T

), namely the set of vectors orthogonal to all columns in A fall into this category.

The above considerations can be stated as

C(A)d�

m

, N(A

T

)d�

m

, C(A)¥N(A

T

) C(A)+N(A

T

)d�

m

.

The question that arises is whether there remain any non-zero vectors in the codomain that are not part of C(A)

or N(A

T

). The fundamental theorem of linear algebra states that there no such vectors, that C(A) is the orthogonal

complement of N(A

T

), and their direct sum covers the entire codomain C(A)�N(A

T

)=�

m

.

LEMMA 3.1. Let °,±, be subspaces of vector space². Then²=°�± if and only if

i. ² =°+±, and

ii. °)±= {0}.

Proof. ² =°�±Ò² =°+± by de�nition of direct sum, sum of vector subspaces. To prove that ² =°�±Ò

°)±= {0}, consider w �°)±. Since w �° and w �± write

w =w +0 (w �°,0�±), w =0+w (0�°,w �±),

and since expression w =u +v is unique, it results that w =0. Now assume (i),(ii) and establish an unique decomposition.

Assume there might be two decompositions of w �², w =u

1

+v

1

, w =u

2

+v

2

, with u

1

,u

2

�°, v

1

,v

2

�±. Obtain u

1

+v

1

=

u

2

+ v

2

, or x =u

1

�u

2

= v

2

�v

1

. Since x �° and x �± it results that x =0, and u

1

=u

2

, v

1

= v

2

, i.e., the decomposition is

unique. ¡
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In the vector space U +V the subspaces U ,V are said to be orthogonal complements is U¥V , and U )V ={0}. When

U d�

m

, the orthogonal complement of U is denoted as U

¥

, U �U

¥

=�

m

.

THEOREM. Given the linear mapping associated with matrix A ��

m×n

we have:

1. C(A)�N(A

T

)=�

m

, the direct sum of the column space and le� null space is the codomain of the mapping

2. C(A

T

)�N(A)=�

n

, the direct sum of the row space and null space is the domain of the mapping

3. C(A)¥N(A

T

) and C(A) )N(A

T

) = {0}, the column space is orthogonal to the le� null space, and they are

orthogonal complements of one another,

C(A)=N(A

T

)

¥

, N(A

T

)=C(A)

¥

.

4. C(A

T

)¥N(A) and C(A

T

))N(A)= {0}, the row space is orthogonal to the null space, and they are orthogonal

complements of one another,

C(A

T

)=N(A)

¥

, N(A)=C(A

T

)

¥

.

Figure 3.1. Graphical represenation of the Fundamental Theorem of Linear Algebra, Gil Strang, Amer. Math. Monthly 100, 848-855,

1993.

Consideration of equality between sets arises in proving the above theorem. A standard technique to show set

equality A=B, is by double inclusion, A

�

�

B'B

�

�

AÒA=B. This is shown for the statements giving the decomposi-

tion of the codomain �

m

. A similar approach can be used to decomposition of �

n

.

i. C(A)¥N(A

T

) (column space is orthogonal to le� null space).

Proof. Consider arbitrary u �C(A), v �N(A

T

). By de�nition of C(A), �x ��

n

such that u = Ax , and by

de�nition of N(A

T

), A

T

v =0. Compute u

T

v =(Ax)

T

v =x

T

A

T

v =x

T

(A

T

v )=x

T

0=0, hence u¥v for arbitrary u ,

v , and C(A)¥N(A

T

). ¡

ii. C(A))N(A

T

)={0} (0 is the only vector both in C(A) and N(A

T

)).
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Proof. (By contradiction, reductio ad absurdum). Assume there might be b �C(A) and b �N(A

T

) and b `0.

Since b �C(A), �x ��

n

such that b =Ax . Since b �N(A

T

), A

T

b =A

T

(Ax)=0. Note that x `0 since x =0Òb =0,

contradicting assumptions. Multiply equality A

T

Ax =0 on le� by x

T

,

x

T

A

T

Ax =0Ò(Ax)

T

(Ax)=b

T

b = �b�

2

=0,

thereby obtaining b =0, using norm property 3. Contradiction.

¡

iii. C(A)�N(A

T

)=�

m

Proof. (iii) and (iv) have established that C(A),N(A

T

) are orthogonal complements

C(A)=N(A

T

)

¥

,N(A

T

)=C(A)

¥

.

By Lemma 2 it results that C(A)�N(A

T

)=�

m

. ¡

The remainder of the FTLA is established by considering B =A

T

, e.g., since it has been established in (v) that C(B)�

N(A

T

)=�

n

, replacing B =A

T

yields C(A

T

)�N(A)=�

m

, etc.

DATA PARTITIONING

1. Mappings as data

1.1. Vector spaces of mappings and matrix representations

A vector space � can be formed from all linear mappings from the vector space °= (U , S, +, Å) to another vector

space±=(V ,S, +, Å)

�={L,S, +, Å}, L={f | f :U�V , f (au +bv )=af (u)+bf (v )},

with addition and scaling of linear mappings de�ned by (f + g)(u)= f (u) + g(u) and (af )(u)= af (u). Let B =

{u

1

, u

2

, . . . } denote a basis for the domain U of linear mappings within �, such that the linear mapping f �� is

represented by the matrix

A = [
f (u

1

) f (u

2

) . . .
].
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When the domain and codomain are the real vector spaces U =�

n

, V =�

m

, the above is a standard matrix of real

numbers, A ��

m×n

. For linear mappings between in�nite dimensional vector spaces the matrix is understood in a

generalized sense to contain an in�nite number of columns that are elements of the codomain V . For example, the

inde�nite integral is a linear mapping between the vector space of functions that allow di�erentiation to any order,

5:�

�

��

�

v(x)=5 u(x)dx

and for the monomial basis B= {1,x ,x

2

, . . .}, is represented by the generalized matrix

A =
Í

x

1

2

x

2

1

3

x

3

. . .

Î
.

Truncation of the basis expansion u(x)=�

j=1

�

u

j

x

j

where u

j

�� to n terms, and sampling of u��

�

at points x

1

, . . . ,

x

m

, forms a standard matrix of real numbers

A =Í

x

1

2

x

2

1

3

x

3

. . .

Î��

m×n

, x

j

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

j

Å

Å

Å

x

m

j

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

As to be expected, matrices can also be organized as vector space3, which is essentially the representation of the

associated vector space of linear mappings,

3= (M,S, +, Å) M= {A¡A = [
f (u

1

) f (u

2

) . . .
]} .

The addition C =A +B and scaling S =aR of matrices is given in terms of the matrix components by

c

ij

=a

ij

+b

ij

, s

ij

=ar

ij

.

1.2. Measurement of mappings

From the above it is apparent that linear mappings and matrices can also be considered as data, and a �rst step in

analysis of such data is de�nition of functionals that would attach a single scalar label to each linear mapping of

matrix. Of particular interest is the de�nition of a norm functional that characterizes in an appropriate sense the

size of a linear mapping.

Consider �rst the case of �nite matrices with real components A ��

m×n

that represent linear mappings between

real vector spaces f :�

m

��

n

. The columns a

1

, . . . ,a

n

of A ��

m×n

could be placed into a single column vector c with

mn components

c =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

a

1

Å

Å

Å

a

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

Subsequently the norm of the matrix A could be de�ned as the norm of the vector c . An example of this approach

is the Frobenius norm

�A�

F

= �c�

2

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

y

i=1

m

y

j=1

n

|a

ij

|

2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

1/2

.
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A drawback of the above approach is that the structure of the matrix and its close relationship to a linear mapping

is lost. A more useful characterization of the size of a mapping is to consider the ampli�cation behavior of linear

mapping. The motivation is readily understood starting from linear mappings between the reals f :���, that are

of the form f (x)=ax . When given an argument of unit magnitude |x |=1, the mapping returns a real number with

magnitude |a|. For mappings f :�

2

��

2

within the plane, arguments that satisfy �x �

2

=1 are on the unit circle with

components x = [ cos¸ sin¸ ] have images through f given analytically by

f (x)=Ax = [ a

1

a

2

]

[

[

[

[

[

[

cos¸

sin¸

]

]

]

]

]

]

=cos¸a

1

+sin¸a

2

,

and correspond to ellipses.

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Figure 1. Mapping of unit circle by f (x)=Ax , A =

[

[

[

[

[

[

0 0

0 0

]

]

]

]

]

]

.

From the above the mapping associated A ampli�es some directions more than others. This suggests a de�nition

of the size of a matrix or a mapping by the maximal ampli�cation unit norm vectors within the domain.

DEFINITION. For vector spaces U ,V with norms � �

U

:U��

+

, � �

V

:V��

+

, the induced norm of f :U�V is

�f �= sup

�x �

U

=1

�f (x)�

V

.

DEFINITION. For vector spaces �

n

,�

m

with norms � �

(n)

:U��

+

, � �

(m)

:V��

+

, the induced norm of matrix A ��

m×n

is

�A�= sup

�x �

(n)

=1

�Ax �

(m)

.
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In the above, any vector norm can be used within the domain and codomain.

2. The Singular Value Decomposition (SVD)

The fundamental theorem of linear algebra partitions the domain and codomain of a linear mapping f :U�V . For

real vectors spaces U =�

n

, V =�

m

the partition properties are stated in terms of spaces of the associated matrix A as

C(A)�N(A

T

)=�

m

C(A)¥N(A

T

) C(A

T

)�N(A)=�

n

C(A

T

)¥N(A)

.

The dimension of the column and row spaces r =dimC(A)=dimC(A

T

) is the rank of the matrix, n� r is the nullity

of A, and m� r is the nullity of A

T

. A in�nite number of bases could be de�ned for the domain and codomain. It is

of great theoretical and practical interest bases with properties that faciliatate insight or computation.

2.1. Orthogonal matrices

The above partitions of the domain and codomain are orthogonal, and suggest searching for orthogonal bases

within these subspaces. Introduce a matrix representation for the bases

U = [
u

1

u

2

. . . u

m

]��

m×m

,V = [
v

1

v

2

. . . v

n

]��

n×n

,

with C(U )=�

m

and C(V )=�

n

. Orthogonality between columns u

i

, u

j

for i` j is expressed as u

i

T

u

j

=0. For i= j , the

inner product is positive u

i

T

u

i

>0, and since scaling of the columns of U preserves the spanning property C(U )=�

m

,

it is convenient to impose u

i

T

u

i

=1. Such behavior is concisely expressed as a matrix product

U

T

U = I

m

,

with I

m

the identity matrix in �

m

. Expanded in terms of the column vectors of U the �rst equality is

[ u

1

u

2

. . . u

m

]

T

[ u

1

u

2

. . . u

m

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

T

u

2

T

Å

Å

Å

u

m

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[ u

1

u

2

. . . u

m

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

T

u

1

u

1

T

u

2

. . . u

1

T

u

m

u

2

T

u

1

u

2

T

u

2

. . . u

2

T

u

m

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

u

m

T

u

1

u

m

T

u

2

. . . u

m

T

u

m

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= I

m

.

It is useful to determine if a matrix X exists such that UX = I

m

, or

UX =U [ x

1

x

2

. . . x

m

]= [ e

1

e

2

. . . e

m

].
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The columns of X are the coordinates of the column vectors of I

m

in the basis U , and can readily be determined

Ux

j

= e

j

ÒU

T

Ux

j

=U

T

e

j

Ò I

m

x

j

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

T

u

2

T

Å

Å

Å

u

m

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

e

j

Òx

j

=(U

T

)

j

,

where (U

T

)

j

is the j

th

column of U

T

, hence X =U

T

, leading to

U

T

U = I =UU

T

.

Note that the second equality

[ u

1

u

2

. . . u

m

][ u

1

u

2

. . . u

m

]

T

= [ u

1

u

2

. . . u

m

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

T

u

2

T

Å

Å

Å

u

m

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=u

1

u

1

T

+u

2

u

2

T

+ Å Å Å +u

m

u

m

T

= I

acts as normalization condition on the matrices U

j

=u

j

u

j

T

.

DEFINITION. A square matrix U is said to be orthogonal if U

T

U =UU

T

= I.

A =

[

[

[

[

[

[

2 0

0 0

]

]

]

]

]

]

2.2. Intrinsic basis of a linear mapping

Given a linear mapping f :U�V , expressed as y = f (x)=Ax , the simplest description of the action of A would

be a simple scaling, as exempli�ed by g(x)= ax that has as its associated matrix aI . Recall that speci�cation of

a vector is typically done in terms of the identity matrix b = Ib , but may be more insightfully given in some other

basis Ax = Ib . This suggests that especially useful bases for the domain and codomain would reduce the action of a

linear mapping to scaling along orthogonal directions, and evaluate y =Ax by �rst re-expressing y in another basis

U , Us = Iy and re-expressing x in another basis V , Vr = Ix . The condition that the linear operator reduces to simple

scaling in these new bases is expressed as s

i

=Ã

i

r

i

for i=1, . . . ,min(m,n), with Ã

i

the scaling coe�cients along each

direction which can be expressed as a matrix vector product s =£r , where £��

m×n

is of the same dimensions as A

and given by

£=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ã

1

0 . . . 0 0 . . . 0

0 Ã

2

. . . 0 0 . . . 0

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 Å

Å

Å

Å

Å

Å

Å

Å

Å

0 0 . . . Ã

r

0 . . . 0

0 0 . . . 0 0 . . . 0

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 0 . . . 0 0 . . . 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

Imposing the condition that U ,V are orthogonal leads to

Us = yÒ s =U

T

y ,Vr =xÒ r =V

T

x ,
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which can be replaced into s =£r to obtain

U

T

y =£V

T

xÒ y =U £V

T

x .

From the above the orthogonal bases U ,V and scaling coe�cients £ that are sought must satisfy A =U £V

T

.

THEOREM. Every matrix A ��

m×n

has a singular value decomposition (SVD)

A =U £V

T

,

with properties:

1. U ��

m×m

is an orthogonal matrix, U

T

U = I

m

;

2. V ��

m×m

is an orthogonal matrix, V

T

V = I

n

;

3. £��

m×n

is diagonal, £=diag(Ã

1

, . . . ,Ã

p

), p=min(m,n), and Ã

1

�Ã

2

� Å Å Å �Ã

p

�0.

Proof. The proof of the SVD makes use of properties of the norm, concepts from analysis and complete induction.

Adopting the 2-norm set Ã

1

= �A�

2

,

Ã

1

= sup

�x �

2

=1

�Ax �

2

.

The domain �x �

2

= 1 is compact (closed and bounded), and the extreme value theorem implies that f (x)=Ax attains

its maxima and minima, hence there must exist some vectors u

1

, v

1

of unit norm such that Ã

1

u

1

=Av

1

ÒÃ

1

= u

1

T

Av

1

.

Introduce orthogonal bases U

1

, V

1

for �

m

,�

n

whose �rst column vectors are u

1

,v

1

, and compute

U

1

T

AV

1

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

u

1

T

Å

Å

Å

u

m

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[
Av

1

. . . Av

n

]=

[

[

[

[

[

[

[

[

Ã

1

w

T

0 B

]

]

]

]

]

]

]

]

=C .

In the above w

T

is a row vector with n�1 components u

1

T

Av

j

, j =2,...,n, and u

i

T

Av

1

must be zero for u

1

to be the direction

along which the maximum norm �Av

1

� is obtained. Introduce vectors

y =

[

[

[

[

[

[

Ã

1

w

]

]

]

]

]

]

, z =Cy =

[

[

[

[

[

[

[

[

Ã

1

2

+w

T

w

Bw

]

]

]

]

]

]

]

]

,

and note that �z �

2

� �y �

2

2

=Ã

1

2

+w

T

w. From �U

1

T

AV

1

�= �A�=Ã

1

=�C��Ã

1

2

+w

T

w it results that w =0. By induction, assume

that B has a singular value decomposition, B =U

2

£

2

V

2

T

, such that

U

1

T

AV

1

=

[

[

[

[

[

[

[

[

[

[

Ã

1

0

T

0 U

2

£

2

V

2

T

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

1 0

T

0 U

2

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

Ã

1

0

T

0 £

2

]

]

]

]

]

]

]

]

[

[

[

[

[

[

[

[

[

[

1 0

T

0 V

2

T

]

]

]

]

]

]

]

]

]

]

,

and the orthogonal matrices arising in the singular value decomposition of A are

U =U

1

[

[

[

[

[

[

[

[

1 0

T

0 U

2

]

]

]

]

]

]

]

]

,V

T

=

[

[

[

[

[

[

[

[

[

[

1 0

T

0 V

2

T

]

]

]

]

]

]

]

]

]

]

V

1

T

.
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The scaling coe�cients Ã

j

are called the singular values of A. The columns of U are called the le� singular vectors,

and those of V are called the right singular vectors.

The fact that the scaling coe�cients are norms of A and submatrices of A, Ã

1

= �A�, is crucial importance in appli-

cations. Carrying out computation of the matrix products

A = [
u

1

u

2

. . . u

r

u

r+1

. . . u

m

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
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[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
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[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ã

1

0 . . . 0 0 . . . 0

0 Ã

2

. . . 0 0 . . . 0

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 Å

Å

Å

Å

Å

Å

Å

Å

Å

0 0 . . . Ã

r

0 . . . 0

0 0 . . . 0 0 . . . 0

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 0 . . . 0 0 . . . 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]
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[
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[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
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[
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[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

v

1

T

v

2

T

Å

Å

Å

v

r

T

v

r+1

T

Å

Å

Å

v

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= [
u

1

u

2

. . . u

r

u

r+1

. . . u

m

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
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[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
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[

[

[

[

[

[

[
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[

[

[

[

[
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[
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[

[

[

[

[

Ã

1

v

1

T

Ã

2

v

2

T

Å

Å

Å

Ã

r

v

r

T

Å

Å

Å

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]
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]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

leads to a representation of A as a sum

A =
y

i=1

r

Ã

i

u

i

v

i

T

, r �min (m,n).

A =Ã

1

u

1

v

1

T

+Ã

2

u

2

v

2

T

+ Å Å Å +Ã

r

u

r

v

r

T

Each product u

i

v

i

T

is a matrix of rank one, and is called a rank-one update. Truncation of the above sum to p terms

leads to an approximation of A

A EA

p

=
y

i=1

p

Ã

i

u

i

v

i

T

.

In very many cases the singular values exhibit rapid, exponential decay, Ã

1

kÃ

2

k ÅÅ Å, such that the approximation

above is an accurate representation of the matrix A.

? ? ?
Figure 3.2. Successive SVD approximations of Andy Warhol's painting, Marilyn Diptych (~1960), with k =10,20, 40 rank-one updates.

DATA PARTITIONING 51



octave] m=350; P=m**2

P = 122500

octave] q1=(2*m+1)*10

q1 = 7010

octave] q2=(2*m+1)*20

q2 = 14020

octave] q3=(2*m+1)*40

q3 = 28040

octave]

2.3. SVD solution of linear algebra problems

The SVD can be used to solve common problems within linear algebra.

Change of coordinates. To change from vector coordinates b in the canonical basis I ��

m×m

to coordinates x in

some other basis A ��

m×m

, a solution to the equation Ib =Ax can be found by the following steps.

1. Compute the SVD, U £V

T

=A;

2. Find the coordinates of b in the orthogonal basis U , c =U

T

b ;

3. Scale the coordinates of c by the inverse of the singular values y

i

= c

i

/Ã

i

, i = 1, . . . ,m, such that £ y = c is

satis�ed;

4. Find the coordinates of y in basis V

T

, x =Vy .

Best 2-norm approximation. In the above A was assumed to be a basis, hence r =rank(A)=m. If columns of A do

not form a basis, r <m, then b ��

m

might not be reachable by linear combinations within C(A). The closest vector

to b in the norm is however found by the same steps, with the simple modi�cation that in Step 3, the scaling is

carried out only for non-zero singular values, y

i

= c

i

/Ã

i

, i =1, . . . , r .

The pseudo-inverse. From the above, �nding either the solution of Ax = Ib or the best approximation possible if

A is not of full rank, can be written as a sequence of matrix multiplications using the SVD

(U £V

T

)x =bÒU (£V

T

x)=bÒ(£V

T

x)=U

T

bÒV

T

x =£

+

U

T

bÒx =V£

+

U

T

b ,

where the matrix £

+

��

n×m

(notice the inversion of dimensions) is de�ned as a matrix with elements Ã

i

�1

on the

diagonal, and is called the pseudo-inverse of £. Similarly the matrix

A

+

=V£

+

U

T

that allows stating the solution of Ax =b simply as x =A

+

b is called the pseudo-inverse of A. Note that in practice

A

+

is not explicitly formed. Rather the notation A

+

is simply a concise reference to carrying out steps 1-4 above.
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CHAPTER 4

LEAST SQUARES

DATA COMPRESSION

A typical scenario in many sciences is acquisition of m numbers to describe some object that is understood to

actually require only njm parameters. For example, m voltage measurements u

i

of an alternating current could

readily be reduced to three parameters, the amplitude, phase and frequency u(t)=asin(Ét+Æ). Very o�en a simple

�rst-degree polynomial approximation y =ax +b is sought for a large data set D ={(x

i

,y

i

), i =1, . . . ,m}. All of these

are instances of data compression, a problem that can be solved in a linear algebra framework.

1. Projection

Consider a partition of a vector space U into orthogonal subspaces U =V �W , V =W

¥

,W =V

¥

. Within the typical

scenario described above U =�

m

, V ��

m

,W ��

m

, dimV =n, dimW =m�n. If V = [
v

1

. . . v

n

]��

m×n

is a basis for V

andW =[
w

1

. . . w

m�n

]��

m×(m�n)

is a basis forW, then U =[
v

1

. . . v

n

w

1

. . . w

m�n

] is a basis for U . Even though

the matrices V ,W are not necessarily square, they are said to be orthogonal, in the sense that all columns are of

unit norm and orthogonal to one another. Computation of the matrix product V

T

V leads to the formation of the

identity matrix within �

n

V

T

V =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

v

1

T

v

2

T

Å

Å

Å

v

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[ v

1

v

2

. . . v

n

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

v

1

T

v

1

v

1

T

v

2

. . . v

1

T

v

n

v

2

T

v

1

v

2

T

v

2

. . . v

2

T

v

n

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

v

n

T

v

1

v

n

T

v

2

. . . v

n

T

v

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

= I

n

.

Similarly, W

T

W = I

m�n

. Whereas for the square orthogonal matrix U multiplication both on the le� and the right

by its transpose leads to the formation of the identity matrix

U

T

U =UU

T

= I

m

,

the same operations applied to rectangular orthogonal matrices lead to di�erent results

V

T

V = I

n

,VV

T

= [ v

1

v

2

. . . v

n

]

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

v

1

T

v

2

T

Å

Å

Å

v

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

=
y

i=1

n

v

i

v

i

T

, rank(v

i

v

i

T

)=1

A simple example is provided by taking V = I

m,n

, the �rst n columns of the identity matrix in which case

VV

T

=
y

i=1

n

e

i

e

i

T

=

[

[

[

[

[

[

I

n

0

0 0

]

]

]

]

]

]

��

m×m

.
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Applying P =VV

T

to some vector b ��

m

leads to a vector r =Pb whose �rst n components are those of b , and the

remaining m � n are zero. The subtraction b � r leads to a new vector s = (I � P )b that has the �rst components

equal to zero, and the remaining m�n the same as those of b . Such operations are referred to as projections, and

for V = I

m,n

correspond to projection onto the span{e

1

, . . . , e

n

}.

octave] I4=eye(5); V=I4(:,1:2); P=V*V'; Q=I4-P;

b=rand(5,1); r=P*b; s=Q*b; disp([P b r s])

1.00000 0.00000 0.00000 0.00000 0.00000 0.42253 0.42253 0.00000

0.00000 1.00000 0.00000 0.00000 0.00000 0.95900 0.95900 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.41781 0.00000 0.41781

0.00000 0.00000 0.00000 0.00000 0.00000 0.45744 0.00000 0.45744

0.00000 0.00000 0.00000 0.00000 0.00000 0.49784 0.00000 0.49784

octave]

U =�

2

W =

{

{

{

{

{

{

{

{

{

{

{

{

[

[

[

[

[

[

0

y

]

]

]

]

]

]

|y ��

}

}

}

}

}

}

}

}

}

}

}

}

V =

{

{

{

{

{

{

{

{

{

{

{

{

[

[

[

[

[

[

x

0

]

]

]

]

]

]

| x ��

}

}

}

}

}

}

}

}

}

}

}

}

b

r =Pb

s =(I �P )b

Figure 4.1. Projection in �

2

. The vectors r , s ��

2

have two components, but could be expressed through scaling of e

1

,e

2

.

Returning to the general case, the orthogonal matrices U ��

m×m

, V ��

m×n

, W ��

m×(m�n)

are associated with linear

mappings b = f (x) =Ux , r = g(b) = Pb , s = h(b) = (I � P ) b . The mapping f gives the components in the I basis

of a vector whose components in the U basis are x . The mappings g , h project a vector onto span{v

1

, . . . , v

n

},

span{w

1

, . . . ,w

m�n

}, respectively. When V ,W are orthogonal matrices the projections are also orthogonal r¥ s .

Projection can also be carried out onto nonorthogonal spanning sets, but the process is fraught with possible error,

especially when the angle between basis vectors is small, and will be avoided henceforth.

Notice that projection of a vector already in the spanning set simply returns the same vector, which leads to a

general de�nition.

DEFINITION. The mapping is called a projection if f � f = f, or if for any u �U, f (f (u)) = f (u). With P the matrix

associated f, a projection matrix satis�es P

2

=P.

P =VV

T

P

2

=PP =VV

T

VV

T

=V (V

T

V )V

T

=VIV

T

=VV

T

=P
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2. Gram-Schmidt

Orthonormal vector sets {q

1

, . . . , q

n

} are of the greatest practical utility, leading to the question of whether some

such a set can be obtained from an arbitrary set of vectors {a

1

, . . . , a

n

}. This is possible for independent vectors,

through what is known as the Gram-Schmidt algorithm

1. Start with an arbitrary direction a

1

2. Divide by its norm to obtain a unit-norm vector q

1

= a

1

/�a

1

�

3. Choose another direction a

2

4. Subtract o� its component along previous direction(s) a

2

�(q

1

T

a

2

)q

1

5. Divide by norm q

2

= (a

2

�(q

1

T

a

2

)q

1

)/�a

2

�(q

1

T

a

2

)q

1

�

6. Repeat the above

a

1

a

2

q

1

q

2

a

2

�(q

1

T

a

2

)q

1

P

1

a

2

=(q

1

q

1

T

)a

2

= q

1

(q

1

T

a

2

)=(q

1

T

a

2

) q

1

The above geometrical description can be expressed in terms of matrix operations as

A = (
a

1

a

2

. . . a

n

)= (
q

1

q

2

. . . q

n

)

(

(
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(
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+ . . . + r
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The system is easily solved by forward substitution resulting in what is known as the (modi�ed) Gram-Schmidt

algorithm, transcribed below both in pseudo-code and in Octave.

Algorithm (Gram-Schmidt)

Given n vectors a

1

, . . . ,a

n

Initialize q

1

= a

1

,..,q

n

= a

n

, R = I

n

for i =1 to n

r

ii

=(q

i

T

q

i

)

1/2

if r

ii

<õ break;

q

i

= q

i

/r

ii

for j = i+1 to n

r

ij

= q

i

T

a

j

; q

j

= q

j

� r

ij

q

i

end

end

return Q ,R

octave] function [Q,R] = mgs(A)

[m,n]=size(A); Q=A; R=eye(n);

for i=1:n

R(i,i) = sqrt(Q(:,i)'*Q(:,i));

if (R(i,i)<eps) break;

Q(:,i) = Q(:,i)/R(i,i);

for j=i+1:n

R(i,j) = Q(:,i)'*A(:,j);

Q(:,j) = Q(:,j) - R(i,j)*Q(:,i);

end;

end;

end

octave]

Note that the normalization condition �q

ii

�=1 is satisifed by two values ±r

ii

, so results from the above implementa-

tion might give orthogonal vectors q

1

,..., q

n

of di�erent orientations than those returned by the Octave qr function.

The implementation provided by computational packages such as Octave contain many re�nements of the basic

algorithm and it's usually preferable to use these in applications.

octave] A=rand(4); [Q,R]=mgs(A); disp([Q R])

0.82757 -0.25921 -0.49326 0.06802 0.83553 0.64827 1.24651 1.05301

0.19408 0.53127 0.15805 0.80939 0.00000 0.93177 0.82700 0.87551

0.22006 0.79553 -0.12477 -0.55058 0.00000 0.00000 0.38433 -0.20336

0.47857 -0.13302 0.84625 -0.19270 0.00000 0.00000 0.00000 0.42469

octave] [Q1,R1]=qr(A); disp([Q1 R1])

-0.82757 0.25921 -0.49326 -0.06802 -0.83553 -0.64827 -1.24651 -1.05301

-0.19408 -0.53127 0.15805 -0.80939 0.00000 -0.93177 -0.82700 -0.87551

-0.22006 -0.79553 -0.12477 0.55058 0.00000 0.00000 0.38433 -0.20336

-0.47857 0.13302 0.84625 0.19270 0.00000 0.00000 0.00000 -0.42469

octave] disp([norm(A-Q*R) norm(A-Q1*R1)])

1.1102e-16 8.0390e-16

octave]

By analogy to arithmetic and polynomial algebra, the Gram-Schmidt algorithm furnishes a factorization

QR =A

with Q ��

m×n

with orthonormal columns and R ��

n×n

an upper triangular matrix, known as the QR-factorization.

Since the column vectors within Q were obtained through linear combinations of the column vectors of A we have

C(A)=C(Q )`C(R)

AX =B ,A[
x

1

. . . x

n

]= [
Ax

1

. . . Ax

n

].
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The QR-factorization can be used to solve basic problems within linear algebra.

octave] A=[3 2; 1 2]

A =

3 2

1 2

octave] [Q R]=qr(A)

Q =

-0.94868 -0.31623

-0.31623 0.94868

R =

-3.16228 -2.52982

0.00000 1.26491

octave]

3. QR solution of linear algebra problems

3.1. Transformation of coordinates

Recall that when given a vector b ��

m

, an implicit basis is assumed, the canonical basis given by the column vectors

of the identity matrix I ��

m×m

. The coordinates x in another basis A ��

m×m

can be found by solving the equation

Ib =b =Ax ,

by an intermediate change of coordinates to the orthogonal basis Q . Since the basis Q is orthogonal the relation

Q

T

Q = I holds, and changes of coordinates from I to Q , Qc =b , are easily computed c =Q

T

b . Since matrix multi-

plication is associative

b =Ax = (QR)x =Q (Rx),

the relations Rx =Q

T

b = c are obtained, stating that x also contains the coordinates of c in the basis R . The three

steps are:

1. Compute the QR-factorization, QR =A;

2. Find the coordinates of b in the orthogonal basis Q , c =Q

T

b ;

3. Find the coordinates of x in basis R , Rx = c .
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Since R is upper-triangular,
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the coordinates of c in the R basis are easily found by back substitution.

Algorithm (Back substitution)

Given R upper-triangular, vectors c

for i =m down to 1

if r

ii

<õ break;

x

i

= c

i

/r

ii

for j = i-1 down to 1

c

j

= c

j

� r

ji

x

i

end

end

return x

octave] function x=bcks(R,c)

[m,n]=size(R); x=zeros(m,1);

for i=m:-1:1

x(i) = c(i)/R(i,i);

for j=i-1:-1:1

c(j) = c(j) - R(j,i)*x(i);

end;

end;

end

octave]

The above operations are carried out in the background by the Octave backslash operation A\b to solve A*x=b,

inspired by the scalar mnemonic ax =bÒx = (1/a)b. Again, many additional re�nements of the basic algorithm

argue for using the built-in Octave functions, even though the above implementations can be veri�ed as correct.

octave] xex=rand(4,1); b=A*xex; [Q,R]=mgs(A); c=Q'*b; x=bcks(R,c); xO=A\b;

octave] disp([xex x xO])

   0.96838   0.96838   0.96838

   0.31829   0.31829   0.31829

   0.58529   0.58529   0.58529

   0.38250   0.38250   0.38250

octave] 

3.2. General orthogonal bases

The above approch for the real vector space �

m

can be used to determine orthogonal bases for any other vector

space by appropriate modi�cation of the scalar product. For example, within the space of smooth functions�

�

[�1,

1] that can di�erentiated an arbitrary number of times, the Taylor series

f (x)= f (0) Å1+ f

¹

(0) Åx +

1

2

f

¹¹

(0) Åx

2

+ Å Å Å +

1

n!

f

(n)

(0) Åx

n

+ Å Å Å+
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is seen to be a linear combination of the monomial basis M =
�

1 x x

2

. . .

�
with scaling coe�cients

µ
f (0), f

¹

(0),

1

2

f

¹¹

(0), . . .
¶
. The scalar product

( f ,g)=5

�1

1

f (x)g(x)dx

can be seen as the extension to the [�1,1] continuum of a the vector dot product. Orthogonalization of the mono-

mial basis with the above scalar product leads to the de�nition of another family of polynomials, known as the

Legendre polynomials

Q

0

(x)=±

1

2

²

1/2

Å1,Q

1

(x)=±

3

2

²

1/2

Åx ,Q

2

(x)=±

5

8

²

1/2

Å(3x

2

�1),Q

4

(x)=±

7

8

²

1/2

Å(5x

3

�3x), . . . .

The Legendre polynomials are usually given with a di�erent scaling such that P

k

(1)=1, rather than the unit norm

condition �Q

k

�= (Q

k

,Q

k

)

1/2

= 1. The above results can be recovered by sampling of the interval [�1, 1] at points

x

i

= (i �1)h�1, h=2/(m�1), i =1, . . . ,m, by approximation of the integral by a Riemann sum

5

�1

1

f (x)L

j

(x)dx Eh
y

i=1

m

f (x

i

)L

j

(x

i

)=hf

T

L

j

.

octave] m=50; h=2/(m-1); x=(-1:h:1)'; M=[x.^0 x.^1 x.^2 x.^3 x.^4]; [Q,R]=mgs(M);

S=diag(1./Q(m,:)); P=Q*S; sc=[-1 1 -1 1];

figure(1); plot(x,M(:,1),x,M(:,2),x,M(:,3),x,M(:,4)); axis(sc); grid on;

figure(2); plot(x,P(:,1),x,P(:,2),x,P(:,3),x,P(:,4)); axis(sc); grid on;

octave]

? ?
Figure 4.2. Comparison of monomial basis (le�) to Legendre polynomial basis (right). The �resolution� of P

3

(x ) can be interpreted as

the number of crossings of the y =0 ordinate axis, and is greater than that of the corresponding monomial x

3

.
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3.3. Least squares

The approach to compressing data D = {(x

i

,y

i

)| i = 1, . . . ,m} suggested by calculus concepts is to form the sum of

squared di�erences between y(x

i

) and y

i

, for example for y(x)=a

0

+a

1

x when carrying out linear regression,

S(a

0

,a

1

)=
y

i=1

m

(y(x

i

)�y

i

)

2

=
y

i=1

m

(a

0

+a

1

x

i

�y

i

)

2

and seek (a

0

,a

1

) that minimize S(a

0

,a

1

). The function S(a

0

,a

1

)�0 can be thought of as the height of a surface above

the a

0

a

1

plane, and the gradient �S is de�ned as a vector in the direction of steepest slope. When at some point

on the surface if the gradient is di�erent from the zero vector �S `0, travel in the direction of the gradient would

increase the height, and travel in the opposite direction would decrease the height. The minimal value of S would

be attained when no local travel could decrease the function value, which is known as stationarity condition, stated

as �S =0. Applying this to determining the coe�cients (a

0

,a

1

) of a linear regression leads to the equations

�S

�a

0

=0Ò2y

i=1

m

(a

0

+a

1

x

i

�y

i

)=0Ôma

0

+

(

(

(

(

(

(

(

(

(

(

y

i=1

m

x

i

)

)

)

)

)

)

)

)

)

)

a

1

=y

i=1

m

y

i

,

�S

�a

1

=0Ò2
y

i=1

m

(a

0

+a

1

x

i

�y

i

)x

i

=0Ô

(

(

(

(

(

(

(

(

(

(

y

i=1

m

x

i

)

)

)

)

)

)

)

)

)

)

a

0

+

(

(

(

(

(

(

(

(

(

(

y
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m

x

i

2

)
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)

)

)

)

)

)

)
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a

1

=
y

i=1

m

x

i

y

i

.

The above calculations can become tedious, and do not illuminate the geometrical essence of the calculation, which

can be brought out by reformulation in terms of a matrix-vector product that highlights the particular linear com-

bination that is sought in a liner regression. Form a vector of errors with components e

i

=y(x

i

)�y

i

, which for linear

regression is y(x)=a

0

+a

1

x . Recognize that y(x

i

) is a linear combination of 1 and x

i

with coe�cients a

0

,a

1

, or in

vector form

e =

(
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1 x

1

Å

Å

Å

Å

Å

Å

1 x

m

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(

(

(

(

(

(

a

0

a

1

)

)

)

)

)

)

� y =(
1 x

)a � y =Aa � y

The norm of the error vector �e� is smallest when Aa is as close as possible to y . Since Aa is within the column

space of C(A), Aa �C(A), the required condition is for e to be orthogonal to the column space

e¥C(A)ÒA

T

e =

(

(

(

(

(

(

(

(

(

(

1

T

x

T

)

)

)

)

)

)

)

)

)

)

e =

(

(

(

(

(

(

(

(

(

(

1

T

e

x

T

e

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

0

0

)

)

)

)

)

)

=0

A

T

e =0ÔA

T

(Aa � y)=0Ô(A

T

A)a =A

T

y =b .

The above is known as the normal system, with N =A

T

A is the normal matrix. The system Na =b can be interpreted

as seeking the coordinates in the N =A

T

A basis of the vector b =A

T

y . An example can be constructed by randomly

perturbing a known function y(x)= a

0

+ a

1

x to simulate measurement noise and compare to the approximate aÜ

obtained by solving the normal system.

1. Generate some data on a line and perturb it by some random quantities

octave] m=100; x=(0:m-1)/m; a=[2; 3];

a0=a(1); a1=a(2); yex=a0+a1*x; y=(yex+rand(1,m)-0.5)';
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octave]

2. Form the matrices A, N =A

T

A, vector b =A

T

y

octave] A=ones(m,2); A(:,2)=x(:); N=A'*A; b=A'*y;

octave]

3. Solve the system Na =b , and form the linear combination y
Ü
=Aa closest to y

octave] atilde=N\b; disp([a atilde]);

2.0000 2.0302

3.0000 2.9628

octave]

The normal matrix basis N =A

T

A can however be an ill-advised choice. Consider A ��

2×2

given by

A = [
a

1

a

2

]=

[

[

[

[

[

[

1 cos¸

0 sin¸

]

]

]

]

]

]

,

where the �rst column vector is taken from the identity matrix a

1

=e

1

, and second is the one obtained by rotating it

with angle ¸ . If ¸ =À /2, the normal matrix is orthogonal, A

T

A= I , but for small ¸ , A and N =A

T

A are approximated as

A E

[

[

[

[

[

[

1 1

0 ¸

]

]

]

]

]

]

,N = [
n

1

n

2

]=

[

[

[

[

[

[

[

[

1 1

0 ¸

2

]

]

]

]

]

]

]

]

.

When ¸ is small a

1

, a

2

are almost colinear, and n

1

,n

2

even more so. This can lead to ampli�cation of small errors,

but can be avoided by recognizing that the best approximation in the 2-norm is identical to the Euclidean concept

of orthogonal projection. The orthogonal projector onto C(A) is readily found by QR-factorization, and the steps

to solve least squares become

1. Compute QR =A

2. The projection of y onto the column space of A is z =QQ

T

y , and has coordinates c =Q

T

y in the orthogonal

basis Q .

3. The same z can also obtained by linear combination of the columns of A, z =Aa =QQ

T

y , and replacing A

with its QR-factorization gives QRa =Qc , that leads to the system Ra = c , solved by back-substitution.

octave] [Q,R]=qr(A); c=Q'*y; aQR=R\c; disp([a atilde aQR])

2.0000 2.0302 2.0302

3.0000 2.9628 2.9628

octave]

The above procedure carried over to approximation by higher degree polynomials.

DATA COMPRESSION 61



octave] m=100; n=6; x=(0:m-1)/m; x=x'; a=randi(10,n,1); A=[];

for j=1:n

A = [A x.^(j-1)];

end;

yex=A*a; y=yex+(rand(m,1)-0.5);

octave] N=A'*A; b=A'*y; atilde=inv(N)*b;

[Q,R]=qr(A); c=Q'*y; aQR=R\c; 

disp([a atilde aQR]);

8.0000 8.0847 8.0847

8.0000 7.1480 7.1480

4.0000 4.2264 4.2264

4.0000 8.7568 8.7568

10.0000 2.7420 2.7420

6.0000 9.0386 9.0386

octave]

b

e

Ax

C(A)

Givendatab , formA,�ndx , such that �e�= �Ax �b� isminimized

e =b �Ax
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MODEL REDUCTION

1. Projection of mappings

The least-squares problem

min

x��

n

�y �Ax � (4.1)

focuses on a simpler representation of a data vector y ��

m

as a linear combination of column vectors of A ��

m×n

.

Consider some phenomenonmodeled as a function between vector spaces f :X�Y , such that for input parameters

x �X , the state of the system is y = f (x). For most models f is di�erentiable, a transcription of the condition that

the system should not exhibit jumps in behavior when changing the input parameters. Then by appropriate choice

of units and origin, a linearized model

y =Ax , A ��

m×n

,

is obtained if y �C(A), expressed as (1) if y 	C(A).

A simpler description is o�en sought, typically based on recognition that the inputs and outputs of the model

can themselves be obtained as linear combinations x =Bu , y =C v , involving a smaller set of parameters u ��

q

,

v ��

p

, p <m, q <n. The column spaces of the matrices B ��

n×q

, C ��

m×p

are vector subspaces of the original set

of inputs and outputs, C(B ) d�

n

, C(C) d�

m

. The sets of column vectors of B ,C each form a reduced basis for

the system inputs and outputs if they are chosed to be of full rank. The reduced bases are assumed to have been

orthonormalized through the Gram-Schmidt procedure such that B

T

B = I

q

, and C

T

C = I

p

. Expressing the model

inputs and outputs in terms of the reduced basis leads to

Cv =ABuÒv =C

T

ABuÒv =Ru .

The matrix R =C

T

AB is called the reduced system matrix and is associated with a mapping g :U�V , that is a

restriction to the U ,V vector subspaces of the mapping f . When f is an endomorphism, f :X�X , m=n, the same

reduced basis is used for both inputs and outputs, x =Bu , y =Bv , and the reduced system is

v =Ru ,R =B

T

AB .

Since B is assumed to be orthogonal, the projector onto C(B) is P

B

=BB

T

. Applying the projector on the inital

model

P

B

y =P

B

Ax

leads to BB

T

y =BB

T

Ax , and since v =B

T

y the relation Bv =BB

T

ABu is obtained, and conveniently grouped as

Bv =B (B

T

AB)uÒBv =B (Ru),

again leading to the reduced model v =Bu . The above calculation highlights that the reduced model is a projection

of the full model y =Ax on C(B ).
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2. Reduced bases

2.1. Correlation matrices

Correlation coe�cient. Consider two functions x

1

,x

2

:���, that represent data streams in time of inputs x

1

(t)

and outputs x

2

(t) of some system. A basic question arising in modeling and data science is whether the inputs

and outputs are themselves in a functional relationship. This usually is a consequence of incomplete knowledge

of the system, such that while x

1

, x

2

might be assumed to be the most relevant input, output quantities, this is

not yet fully established. A typical approach is to then carry out repeated measurements leading to a data set

D = {(x

1

(t

i

), x

2

(t

i

))| i = 1, . . . ,N}, thus de�ning a relation. Let x

1

, x

2

��

N

denote vectors containing the input and

output values. The mean values ¼

1

,¼

2

of the input and output are estimated by the statistics

¼

1

E x̄

1

=

1

N

y

i=1

N

x

1

(t

i

)=E [x

1

],¼

2

E x̄

2

=

1

N

y

i=1

N

x

2

(t

i

)=E [x

2

],

where E is the expectation seen to be a linear mapping, E :�

N

�� whose associated matrix is

E =

1

N

[ 1 1 . . . 1 ],

and the means are also obtained by matrix vector multiplication (linear combination),

x̄

1

=Ex

1

, x̄

2

=Ex

2

.

Deviation from the mean is measured by the standard deviation de�ned for x

1

,x

2

by

Ã

1

= E[(x

1

�¼

1

)

2

]
4

, Ã

2

= E[(x

2

�¼

2

)

2

]
4

.

Note that the standard deviations are no longer linear mappings of the data.

Assume that the origin is chosen such that x̄

1

= x̄

2

=0. One tool to estalish whether the relation D is also a function

is to compute the correlation coe�cient

Á(x

1

,x

2

)=

E[x

1

x

2

]

Ã

1

Ã

2

=

E[x

1

x

2

]

E[x

1

2

]E[x

2

2

]
4

,

that can be expressed in terms of a scalar product and 2-norm as

Á(x

1

,x

2

)=

x

1

T

x

2

�x

1

� �x

2

�

.

Squaring each side of the norm property �x

1

+x

2

�� �x

1

�+ �x

2

�, leads to

(x

1

+x

2

)

T

(x

1

+x

2

)�x

1

T

x

1

+x

2

T

x

2

+2 �x

1

� �x

2

�Òx

1

T

x

2

� �x

1

� �x

2

�,

known as the Cauchy-Schwarz inequality, which implies �1�Á(x

1

,x

2

)�1. Depending on the value of Á, the vari-

ables x

1

(t),x

2

(t) are said to be:

1. uncorrelated , if Á=0;

2. correlated , if Á=1;
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3. anti-correlated , if Á=�1.

The numerator of the correlation coe�cient is known as the covariance of x

1

,x

2

cov(x

1

,x

2

)=E[x

1

x

2

].

The correlation coe�cient can be interpreted as a normalization of the covariance, and the relation

cov(x

1

,x

2

)=x

1

T

x

2

=Á(x

1

,x

2

) �x

1

� �x

2

�,

is the two-variable version of a more general relationship encountered when the system inputs and outputs become

vectors.

Patterns in data. Consider now a related problem, whether the input and output parameters x ��

n

, y ��

m

thought

to characterize a system are actually well chosen, or whether they are redundant in the sense that a more insightful

description is furnished by u ��

q

, v ��

p

with fewer components p <m, q < n. Applying the same ideas as in the

correlation coe�cient, a sequence of N measurements is made leading to data sets

X = [ x

1

x

2

. . . x

n

]��

N×n

,Y = [ y

1

y

2

. . . y

n

]��

N×m

.

Again, by appropriate choice of the origin the means of the above measurements is assumed to be zero

E[x ]=0,E[y ]=0.

Covariance matrices can be constructed by

C

X

=X

T

X =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

T

x

2

T

Å

Å

Å

x

n

T

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

[
x

1

x

2

. . . x

n

]=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

x

1

T

x

1

x

1

T

x

2

. . . x

1

T

x

n

x

2

T

x

1

x

2

T

x

2

. . . x

2

T

x

n

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

x

n

T

x

1

x

n

T

x

2

. . . x

n

T

x

n

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

��

n×n

.

Consider now the SVDs of C

X

=N �N

T

, X =U £S

T

, and from

C

X

=X

T

X =(U £S

T

)

T

U £S

T

=S £

T

U

T

U £S

T

=S £

T

£S

T

=N �N

T

,

identify N =S , and � =£

T

£.

Recall that the SVD returns an order set of singular values Ã

1

�Ã

2

� Å Å Å � , and associated singular vectors. In many

applications the singular values decrease quickly, o�en exponentially fast. Taking the �rst q singular modes then

gives a basis set suitable for mode reduction

x =S

q

u = [

s

1

s

2

. . . s

q

]u .
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CHAPTER 5

CHANGE OF BASIS

DATA TRANSFORMATION

1. Gaussian elimination and row echelon reduction

Suppose now that A x =b admits a unique solution. How to �nd it? We are especially interested in constructing

a general procedure, that will work no matter what the size of A might be. This means we seek an algorithm that

precisely speci�es the steps that lead to the solution, and that we can program a computing device to carry out

automatically. One such algorithm is Gaussian elimination.

Consider the system

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

x

1

+2 x

2

�x

3

= 2

2x

1

�x

2

+x

3

= 2

3x

1

�x

2

�x

3

= 1

The idea is to combine equations such that we have one fewer unknown in each equation. Ask: with what number

should the �rst equation be multiplied in order to eliminate x

1

from sum of equation 1 and equation 2? This number

is called a Gaussian multiplier, and is in this case �2. Repeat the question for eliminating x

1

from third equation,

with multiplier �3.

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

x

1

+2x

2

�x

3

= 2

2 x

1

�x

2

+x

3

= 2

3x

1

�x

2

�x

3

= 1

Ò

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

x

1

+2x

2

�x

3

= 2

�5x

2

+3x

3

= �2

�7x

2

+2x

3

= �5

Now, ask: with what number should the second equation be multiplied to eliminate x

2

from sum of second and

third equations. The multiplier is in this case �7/5.

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

x

1

+2x

2

�x

3

= 2

�5x

2

+3x

3

= �2

�7x

2

+2x

3

= �5

Ò

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

x

1

+2x

2

�x

3

= 2

�5x

2

+3x

3

= �2

�

11

5

x

3

= �

11

5

Starting from the last equation we can now �nd x

3

=1, replace in the second to obtain �5x

2

=�5, hence x

2

=1, and

�nally replace in the �rst equation to obtain x

1

=1.

The above operations only involve coe�cients. A more compact notation is therefore to work with what is known

as the "bordered matrix"

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1 2

2 �1 1 2

3 �1 �1 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

<

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1 2

0 �5 3 �2

0 �7 2 �5

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

<

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1 2

0 �5 3 �2

0 0 �

11

5

�

11

5

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)
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Once the above triangular form has been obtain, the solution is found by back substitution, in which we seek to

form the identity matrix in the �rst 3 columns, and the solution is obtained in the last column.

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1 2

0 �5 3 �2

0 0 �

11

5

�

11

5

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

<

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1 2

0 �5 3 �2

0 0 1 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

<

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0 1

0 1 0 1

0 0 1 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

2. LU -factorization

" We have introduced Gaussian elimination as a procedure to solve the linear system A x =b ("�nd coordi-

nates of vector b in terms of column vectors of matrix A"), x ,b ��

m

,A ��

m×m

" We now reinterpret Gaussian elimination as a sequence of matrix multiplications applied to A to obtain a

simpler, upper triangular form.

2.1. Example for m =3

Consider the system A x =b

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

x

1

+2 x

2

�x

3

= 2

2x

1

�x

2

+x

3

= 2

3x

1

�x

2

�x

3

= 1

with

A=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

2 �1 1

3 �1 �1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

,b =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

2

2

1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

We ask if there is a matrix L

1

that could be multiplied with A to produce a result L

1

A with zeros under the main

diagonal in the �rst column. First, gain insight by considering multiplication by the identity matrix, which leaves

A unchanged

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0

0 1 0

0 0 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

2 �1 1

3 �1 �1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

2 �1 1

3 �1 �1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

In the �rst stage of Gaussian multiplication, the �rst line remains unchanged, so we deduce that L

1

should have

the same �rst line as the identity matrix

L

1

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0

? ? ?

? ? ?

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0

? ? ?

? ? ?

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

2 �1 1

3 �1 �1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

0 �5 3

0 �7 2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)
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Next, recall the way Gaussian multipliers were determined: �nd number to multiply �rst line so that added to

second, third lines a zero is obtained. This leads to the form

L

1

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0

? 1 0

? 0 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

Finally, identify the missing entries with the Gaussian multipliers to determine

L

1

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0

�2 1 0

�3 0 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

Verify by carrying out the matrix multiplication

L

1

A=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0

�2 1 0

�3 0 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

2 �1 1

3 �1 �1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

0 �5 3

0 �7 2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

Repeat the above reasoning to come up with a second matrix L

2

that forms a zero under the main diagonal in the

second column

L

2

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0

0 1 0

0 �7/5 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

L

2

L

1

A=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 0 0

0 1 0

0 �7/5 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

0 �5 3

0 �7 2

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 �1

0 �5 3

0 0 �11/5

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

=U

We have obtained a matrix with zero entries under the main diagonal (an upper triangular matrix) by a sequence

of matrix multiplications.

2.2. General m case

From the above, we assume that we can form a sequence of multiplier matrices such that the result is an upper

triangular matrix U

L

m�1

...L

2

L

1

A=U

" Recall the basic operation in row echelon reduction: constructing a linear combination of rows to form zeros

beneath the main diagonal, e.g.

A =

(
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(

(

(
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(

(

(

(

(

(

a

11

a

12

. . . a

1m

a

21

a

22

. . . a

2m

a

31

a

32

. . . a

3m

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

a
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m2

. . . a
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)
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)
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)

)
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)
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)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)
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<

(

(
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(

(

(

(

a

11

a

12

. . . a

1m

0 a

22

�

a

21

a

11

a

12

. . . a

2m

�

a

21

a

11

a

1m

0 a

32

�

a

31

a

11

a

12

. . . a

3m

�

a

31

a

11

a

1m

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

0 a
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�

a

m1

a
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a
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. . . a
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�

a
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a
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a

1m
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)

)
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)
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)

)
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" This can be stated as a matrix multiplication operation, with l

i1

=a

i1

/a
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(
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(

(

(

(

(

(

(
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(

(

(

(

(

(

(

1 0 0 . . . 0

�l
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1 0 . . . 0

�l
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0 1 . . . 0
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a
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a
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a
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. . . a
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a
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a
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. . . a
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Å

Å
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(
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. . . a
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0 a
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� l
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. . . a
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DEFINITION. The matrix
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=

(
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0 . . . �l
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. . . 0

0 . . . �l

k+2,k

. . . 0
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Å

Å
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Å

Å
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Å

Å
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)
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)
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with l

i ,k

=a

i ,k

(k)

/a

k,k

(k)

, and A

(k)

=�a

i ,j

(k)

� the matrix obtained a�er step k of row echelon reduction (or, equivalently, Gaussian

elimination) is called a Gaussian multiplier matrix.

" For A ��

m×m

nonsingular, the successive steps in row echelon reduction (or Gaussian elimination) corre-

spond to successive multiplications on the le� by Gaussian multiplier matrices

L

m�1

L

m�2

. . .L

2

L

1

A =U

" The inverse of a Gaussian multiplier is

L

k

�1

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 . . . 0 . . . 1

0 Å

Å

Å

0 . . . 0
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. . . 0
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. . . 0
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= I � (L

k

� I )

" From (L

m�1

L

m�2

. . .L

2

L

1

)A =U obtain

A = (L

m�1

L

m�2

. . .L

2

L

1

)

�1

U =L

1

�1

L

2

�1

Å . . . ÅL

m�1

�1

U =LU

" Due to the simple form of L

k

�1

the matrix L is easily obtained as
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l
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We will show that this indeed possible if A x = b admits a unique solution. Furthermore, the product of lower

triangular matrices is lower triangular, and the inverse of a lower triangular matrix is lower triangular (same applies

for upper triangular matrices). Introduce the notation

L

�1

=L

m�1

...L

2

L

1

and obtain

L

�1

A=U

or

A=LU

The above result permits a basic insight into Gaussian elimination: the procedure depends on "factoring" the matrix

A into two "simpler" matrices L,U . The idea of representing a matrix as a product of simpler matrices is funda-

mental to linear algebra, and we will come across it repeatedly.

For now, the factorization allows us to devise the following general approach to solving A x =b

1. Find the factorization LU =A

2. Insert the factorization into A x =b to obtain (L U)x =L(U x)=L y =b, where the notation y =U x has been

introduced. The system

Ly =b

is easy to solve by forward substitution to �nd y for given b

3. Finally �nd x by backward substitution solution of

Ux =y

Algorithm Gauss elimination without pivoting

for s =1 to m�1

for i = s +1 to m

t =�a

is

/a

ss

for j = s +1 to m

a

ij

=a

ij

+ t Åa

sj

b

i

=b

i

+ t Åb

s

for s =m downto 1

x

s

=b

s

/a

ss

for i =1 to s �1

b

i

=b

i

�a

is

Åx

s

return x

Algorithm Gauss elimination with partial pivoting
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p =1:m (initialize row permutation vector)

for s =1 to m�1

piv = abs(a

p(s),s

)

for i = s +1 to m

mag = abs(a

p(i),s

)

if mag>piv then

piv=mag;k =p(s);p(s)=p(i);p(i)=k

if piv<õ then break(�Singular matrix�)

t =�a

p(i)s

/a

p(s)s

for j = s +1 to m

a

p(i)j

=a

p(i)j

+ t Åa

p(s)j

b

p(i)

=b

p(i)

+ t Åb

p(s)

for s =m downto 1

x

s

=b

p(s)

/a

p(s)s

for i =1 to s �1

b

p(i)

=b

p(i)

�a

p(i)s

Åx

s

return x

Given A ��

m×n

Singular value decomposition Gram-Schmidt Lower-upper

Transformation of coordinates Ax =b

U £V

T

=A QR =A LU =A

(U £V

T

)x =bÒUy =bÒ y =U

T

b (QR )x =bÒQy =b , y =Q

T

b (LU )x =bÒLy =b (forwardsub to�nd )y

£z = yÒ z =£

+

y Rx = y (back subto�nd x ) Ux = y (back sub to �nd x )

V

T

x = zÒx =Vz

3. Inverse matrix

By analogy to the simple scalar equation a x =b with solution x =a

�1

b when a`0, we are interested in writing the

solution to a linear system A x =b as x =A

�1

b for A ��

m×m

, x ��

m

. Recall that solving A x =b = I b corresponds to

expressing the vector b as a linear combination of the columns of A. This can only be done if the columns of A form

a basis for �

m

, in which case we say that A is non-singular .

DEFINITION 5.1. For matrix A��

m×m

non-singular the inverse matrix is denoted by A

�1

and satis�es the properties

AA

�1

=A

�1

A= I

3.1. Gauss-Jordan algorithm

Computation of the inverse A

�1

can be carried out by repeated use of Gauss elimination. Denote the inverse by

B=A

�1

for a moment and consider the inverse matrix property A B = I . Introducing the column notation for B, I

leads to

A(
B

1

... B

m

)=(
e

1

... e

m

)
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and identi�cation of each column in the equality states

AB

k

= e

k

,k =1,2, ..,m

with e

k

the column unit vector with zero components everywhere except for a 1 in row k . To �nd the inverse we

need to simultaneously solve the m linear systems given above.

Gauss-Jordan algorithm example. Consider

A=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1 2 3

�1 3 1

2 �1 �2

)

)

)
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)

)

)

)

)

)

)

)

)

)

To �nd the inverse we solve the systems A B

1

= e

1

,A B

2

=e

2

,A B

3

= e

3

. This can be done simultaneously by working

with the matrix A bordered by I

(A|I)=
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Carry out now operations involving linear row combinations and permutations to bring the le� side to I
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=
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4. Determinants

" A ��

m×m

a square matrix, det(A)�� is the oriented volume enclosed by the column vectors of A (a paral-

lelipiped)
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" Geometric interpretation of determinants

" Determinant calculation rules

" Algebraic de�nition of a determinant

DEFINITION. The determinant of a square matrix A =(
a

1

. . . a

m

)��

m×m

is a real number

det(A)=

|
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|
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|
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. . . a
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. . . a

2m

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

Å

a

m1

a

m2

. . . a

mm

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

��

giving the (oriented) volume of the parallelepiped spanned by matrix column vectors.

" m=2

A =

(

(

(

(

(

(

a

11

a

12

a

21

a

22

)

)

)

)

)

)

, det(A)= Ä

a

11
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Ä

" m=3

A =

(

(
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)

)

)

)

)
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, det(A)=
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" Computation of a determinant with m=2

Ä

a

11

a

12

a

21

a
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Ä=a

11

a

22

�a

12

a

21

" Computation of a determinant with m=3

|

|
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|

|

|
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|

|

|
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33
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a
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+a

31
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a
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�a
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a
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a

31

�a
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a
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�a

33

a

12

a

21

" Where do these determinant computation rules come from? Two viewpoints

� Geometric viewpoint: determinants express parallelepiped volumes

� Algebraic viewpoint: determinants are computed from all possible products that can be formed from

choosing a factor from each row and each column

" m=2
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A

1

A

2

A = ( a

1

a

2

)=

(

(

(

(

(

(

a

11

a

12

a

21

a

22

)

)

)

)

)

)

Figure 5.1.

" In two dimensions a ``parallelepiped'' becomes a parallelogram with area given as

(Area)= (LengthofBase)×(LengthofHeight)

" Take a

1

as the base, with length b = �a

1

�. Vector a

1

is at angle Æ

1

to x

1

-axis, a

2

is at angle Æ

2

to x

2

-axis, and

the angle between a

1

, a

2

is ¸ =Æ

2

�Æ

1

. The height has length

h= �a

2

� sin¸ = �a

2

�sin(Æ

2

�Æ

1

)= �a

2

�(sinÆ

2

cosÆ

1

� sinÆ

1

cosÆ

2

)

" Use cosÆ

1

=a

11

/�a

1

�, sinÆ

1

=a

12

/�a

1

�, cosÆ

2

=a

21

/�a

2

�, sinÆ

2

=a

22

/�a

2

�

(Area)= �a

1

� �a

2

�(sinÆ

2

cosÆ

1

� sinÆ

1

cosÆ

2

)=a

11

a

22

�a

12

a

21

" The geometric interpretation of a determinant as an oriented volume is useful in establishing rules for

calculation with determinants:

� Determinant of matrix with repeated columns is zero (since two edges of the parallelepiped are

identical). Example for m=3

�=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

a a u

b b v

c c w
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

=abw +bcu+ cav �ubc � vca�wab =0

This is more easily seen using the column notation

�=det( a

1

a

1

a

3

. . . )=0

� Determinant of matrix with linearly dependent columns is zero (since one edge lies in the 'hyper-

plane' formed by all the others)

" Separating sums in a column (similar for rows)

det(
a

1

+b

1

a

2

. . . a

m

)=det(
a

1

a

2

. . . a

m

)+det(
b

1

a

2

. . . a

m

)

with a

i

,b

1

��

m
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" Scalar product in a column (similar for rows)

det( ±a

1

a

2

. . . a

m

)=± det( a

1

a

2

. . . a

m

)

with ± ��

" Linear combinations of columns (similar for rows)

det(
a

1

a

2

. . . a

m

)=det(
a

1

±a

1

+a

2

. . . a

m

)

with ± ��.

" A determinant of size m can be expressed as a sum of determinants of size m�1 by expansion along a row

or column
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" The formal de�nition of a determinant

detA=
y

Ã�£

½(Ã)a

1i

1

a

2i

2

. . .a

mi

m

requires mm! operations, a number that rapidly increases with m

" A more economical determinant is to use row and column combinations to create zeros and then reduce the

size of the determinant, an algorithm reminiscent of Gauss elimination for systems

Example:
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|

=

|
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1 2 3

0 2 4
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|

|
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|
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|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

= Ä

2 4

3 10

Ä=20�12=8

The �rst equality comes from linear combinations of rows, i.e. row 1 is added to row 2, and row 1 multiplied

by 2 is added to row 3. These linear combinations maintain the value of the determinant. The second

equality comes from expansion along the �rst column
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4.1. Cross product

" Consider u, v ��

3

. We've introduced the idea of a scalar product

u Å v =u

T

v =u

1

v

1

+u

2

v

2

+u

3

v

3

in which from two vectors one obtains a scalar

" We've also introduced the idea of an exterior product

uv

T

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

u
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u

2

u

3

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(
v

1

v

2

v

3
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(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

u

1

v

1

u

1

v

2

u

1

v

3

u

2

v

1

u

2

v

2

u

2

v

3

u

3

v

1

u

3

v

2

u

3

v

3

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

in which a matrix is obtained from two vectors

" Another product of two vectors is also useful, the cross product, most conveniently expressed in determi-

nant-like form

u× v =
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|

|

|

|

|
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|

|
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|

|

|

|
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DATA EFFICIENCY

1. Krylov bases

In reduction of the model

Ax = y ,A ��

m×n

,�

n

����

A

�

m

by restriction to a subspaces spanned by the orthogonal column vectors of B ,C , x =Bu , y =Cv , the reduced model

v =Ru

is obtained with R =C

T

AB , the reduced system matrix. The choice of the basis sets B ,C is not yet speci�ed. One

common choice is to use the singular value decomposition A =S£Q

T

and choose the dominant k singular vectors

to span the subspaces,

B =Q

k

,C =S

k

.

This assumes that an SVD is available, and that ordering of vectors by the 2-norm is relevant to the problem. This

is o�en the case in problems in which the matrix A somewhow expresses the energy of a system. For example in

deformation of a structure a relationship between forces f and displacements u is approximated linearly by f =Ku ,

with the sti�ness matrix K expressing the potential energy stored in the deformation.
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However in many cases, the model might not express an energy so the 2-norm is not an appropriate functional, or

even if it is the size of the problem might render the computation of the singular value decomposition impractical.

In such situations alternative procedures to construct reduced bases must be devised.

Consider that the only information available about the problem are the matrix A ��

m×m

and a vector y ��

m

. From

these two a sequence of vectors can be gather into what is known as a Krylov matrix

K

n

=

�

y Ay A

2

y . . . A

n�1

y

�

.

The Krylov matrix K

n

is generally not orthogonal, but an orthogonal basis can readily be extracted through the QR

factorization

Q

n

R =K

n

.

The basis Q

n

can then be adopted, both for the domain and the codomain

B =C =Q

n

.

2. Greedy approximation

The Krylov procedure has the virtue of simplicity, but does not have the desirable property of the SVD of ordering

of the singular vectors. Suppose that the system matrix A ��

m×m

is applied to k vectors x

1

, . . . ,x

k

, leading to forma-

tion of the vector set S ={Ax

1

, . . . ,Ax

k

}. Denote by B the �rst n members of the set ordered in some arbitrary norm

B = [
b

1

b

2

. . . b

n

],njk

b

1

=Ax

Ã(1)

, . . . ,b

k

=Ax

Ã(k)

,

where Ã denotes the permutation that orders the vectors in accordance with the chosen norm. The above is called a

greedy approximation, and furnishes an alternative to the SVD that exhibits an ordering property. As in the Krylov

case, it is usually more e�cient to use an orthogonal set obtained through QR factorization

Q

n

R =B

n

.

78 CHANGE OF BASIS



CHAPTER 6

EIGENPROBLEMS

DATA STABILITY

A =U£V

T

A =QR A =LU

1. The eigenvalue problem

" Consider square matrix A ��

m×m

. The eigenvalue problem asks for vectors x ��

m

, x ` 0, scalars » �� such

that

Ax =»x (6.1)

" Eigenvectors are those special vectors whose direction is not modi�ed by the matrix A

" Rewrite (1): (A �»I)x = 0, and deduce that A �»I must be singular in order to have non-trivial solutions

det(A�»I)=0

" Consider the determinant

det(A�»I)=

|
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|

|

|
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|

|

|
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|

|

|

|

|
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|
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|

|
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|
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. . . a
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�» . . . a

2m
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Å
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m1
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. . . a
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|

|

|
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|

|

|
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|
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|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

" From determinant de�nition ``sum of all products choosing an element from row/column''

det(A�»I)=(�1)

m

»

m

+ c

1

»

m�1

+ . . . + c

m�1

»+ c

m

=p

A

(»)

is the characteristic polynomial associated with the matrix A, and is of degree m

" A ��

m×m

has characteristic polynomial p

A

(») of degree m, which has m roots (Fundamental theorem of

algebra)

" Example

octave] theta=pi/3.; A=[cos(theta) -sin(theta); sin(theta) cos(theta)]

A =

0.50000 -0.86603

0.86603 0.50000
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octave] eig(A)

ans =

0.50000 + 0.86603i

0.50000 - 0.86603i

octave] [R,lambda]=eig(A);

octave] disp(R);

0.70711 + 0.00000i 0.70711 - 0.00000i

0.00000 - 0.70711i 0.00000 + 0.70711i

octave] disp(lambda)

Diagonal Matrix

0.50000 + 0.86603i 0

0 0.50000 - 0.86603i

octave] A=[-2 1 0 0 0 0; 1 -2 1 0 0 0; 0 1 -2 1 0 0; 0 0 1 -2 1 0; 0 0 0 1 -2 1; 0 0 0 0 1 -2];

octave] disp(A)

-2 1 0 0 0 0

1 -2 1 0 0 0

0 1 -2 1 0 0

0 0 1 -2 1 0

0 0 0 1 -2 1

0 0 0 0 1 -2

octave] lambda=eig(A);

octave] disp(lambda);

-3.80194

-3.24698

-2.44504

-1.55496

-0.75302

-0.19806

octave]

" For A ��

m×m

, the eigenvalue problem 5 (x `0) can be written in matrix form as

AX =X�,X = (x

1

. . .x

m

)eigenvector,�=diag(»

1

, . . . ,»

m

)eigenvaluematrices

" If the column vectors of X are linearly independent, then X is invertible and A can be reduced to diagonal

form

A=X�X

�1

,A=U£V

T

" Diagonal forms are useful in solving linear ODE systems

y

¹

=AyÔ(X

�1

y)=� (X

�1

y)
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" Also useful in repeatedly applying A

u

k

=A

k

u

0

=AA . . .Au

0

=(X�X

�1

)(X�X

�1

). . .(X�X

�1

)u

0

=X�

k

X

�1

u

0

" When can a matrix be reduced to diagonal form? When eigenvectors are linearly independent such that the

inverse of X exists

" Matrices with distinct eigenvalues are diagonalizable. Consider A ��

m×m

with eigenvalues »

j

`»

k

for j `k ,

j ,k � {1, . . . ,m}

Proof . By contradiction. Take any two eigenvalues »

j

`»

k

and assume that x

j

would depend linearly on x

k

,

x

k

= cx

j

for some c `0. Then

Ax

1

=»

1

x

1

Ò Ax

1

=»

1

x

1

Ax

2

=»

2

x

2

Ò Acx

1

=»

2

cx

1

and subtracting would give 0=(»

1

�»

2

)x

1

. Since x

1

is an eigenvector, hence x

1

`0 we obtain a contradiction

»

1

=»

2

.

" The characteristic polynomial might have repeated roots. Establishing diagonalizability in that case requires

additional concepts

DEFINITION 6.1. The algebraic multiplicity of an eigenvalue » is the number of times it appears as a repeated root of the

characteristic polynomial p(»)=det(A�»I)

Example. p(»)=»(»�1)(»�2)

2

has two single roots »

1

=0, »

2

=1 and a repeated root »

3,4

=2. The eigenvalue »=2

has an algebraic multiplicity of 2

DEFINITION 6.2. The geometric multiplicity of an eigenvalue » is the dimension of the null space of A�»I

DEFINITION 6.3. An eigenvalue for which the geometric multiplicity is less than the algebraic multiplicity is said to be

defective

PROPOSITION 6.4. A matrix is diagonalizable is the geometric multiplicity of each eigenvalue is equal to the algebraic

multiplicity of that eigenvalue.

" Finding eigenvalues as roots of the characteristic polynomial p(»)=det(A�»I) is suitable for small matrices

A ��

m×m

.

� analytical root-�nding formulas are available only for m�4

� small errors in characteristic polynomial coe�cients can lead to large errors in roots

" Octave/Matlab procedures to �nd characteristic polynomial

� poly(A) function returns the coe�cients
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� roots(p) function computes roots of the polynomial

octave] A=[5 -4 2; 5 -4 1; -2 2 -3]; disp(A);

5 -4 2

5 -4 1

-2 2 -3

octave] p=poly(A); disp(p);

1.00000 2.00000 -1.00000 -2.00000

octave] r=roots(p); disp(r');

1.0000 -2.0000 -1.0000

octave]

" Find eigenvectors as non-trivial solutions of system (A �»I )x =0

»

1

=1ÒA �»

1

I =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

4 �4 2

5 �5 1

�2 2 �4

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

<

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

�2 2 �4

0 0 �6

5 �5 1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

<

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

�2 2 �4

0 0 �6

0 0 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

Note convenient choice of row operations to reduce amount of arithmetic, and use of knowledge that A�»

1

I

is singular to deduce that last row must be null

" In traditional form the above row-echelon reduced system corresponds to

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

�2x

1

+2x

2

�4x

3

= 0

0x

1

+0x

2

�6x

3

= 0

0x

1

+0x

2

+0x

3

= 0

Òx =±

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1

1

0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

, �x �=1Ò± =1/ 2
(

" In Octave/Matlab the computations are carried out by the null function

octave] null(A+5*eye(3))'

ans = [](0x3)

octave]

" The eigenvalues of I ��

3×3

are »

1,2,3

= 1, but small errors in numerical computation can give roots of the

characteristic polynomial with imaginary parts

octave> lambda=roots(poly(eye(3))); disp(lambda')

1.00001 - 0.00001i 1.00001 + 0.00001i 0.99999 - 0.00000i

octave>

" In the following example notice that if we slightly perturb A (by a quantity less than 0.0005=0.05%), the

eigenvalues get perturb by a larger amount, e.g. 0.13%.
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octave] A=[-2 1 -1; 5 -3 6; 5 -1 4]; disp([eig(A) eig(A+0.001*(rand(3,3)-0.5))])

3.0000 + 0.0000i 3.0005 + 0.0000i

-2.0000 + 0.0000i -2.0000 + 0.0161i

-2.0000 + 0.0000i -2.0000 - 0.0161i

octave]

" Extracting eigenvalues and eigenvectors is a commonly encountered operation, and specialized functions

exist to carry this out, including the eig function

octave> [X,L]=eig(A); disp([L X]);

-2.00000 0.00000 0.00000 -0.57735 -0.00000 0.57735

0.00000 3.00000 0.00000 0.57735 0.70711 -0.57735

0.00000 0.00000 -2.00000 0.57735 0.70711 -0.57735

octave> disp(null(A-3*eye(3)))

0.00000

0.70711

0.70711

octave> disp(null(A+2*eye(3)))

0.57735

-0.57735

-0.57735

octave>

" Recall de�nitions of eigenvalue algebraic m

»

and geometric multiplicities n

»

.

DEFINITION. A matrix which has n

»

<m

»

for any of its eigenvalues is said to be defective.

octave> A=[-2 1 -1; 5 -3 6; 5 -1 4]; [X,L]=eig(A); disp(L);

Diagonal Matrix

-2.0000 0 0

0 3.0000 0

0 0 -2.0000

octave> disp(X);

-5.7735e-01 -1.9153e-17 5.7735e-01

5.7735e-01 7.0711e-01 -5.7735e-01

5.7735e-01 7.0711e-01 -5.7735e-01

octave> disp(null(A+2*eye(3)));

0.57735

-0.57735

-0.57735

octave> disp(rank(X))

2

octave>
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2. Computation of the SVD

" The SVD is determined by eigendecomposition of A

T

A, and AA

T

� A

T

A=(U£V

T

)

T

(U£V

T

)=V (£

T

£)V

T

, an eigendecomposition of A

T

A. The columns of V are eigen-

vectors of A

T

A and called right singular vectors of A

B=A

T

A=V£

T

£V

T

=V�V

T

� AA

T

=(U£V

T

)(U£

T

V

T

)

T

=U (££

T

)U

T

, an eigendecomposition of A

T

A. The columns of U are eigen-

vectors of AA

T

and called le� singular vectors of A

� The matrix £ has form

£=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Ã

1

Ã

2

Å

Å

Å

Ã

r

0

Å

Å

Å

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

��

+

m×n

and Ã

i

are the singular values of A.

" The singular value decomposition (SVD) furnishes complete information about A

� rank(A)= r (the number of non-zero singular values)

� U ,V are orthogonal basis for the domain and codomain of A
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1. Bases induced by eigenmodes

The trigonometric functions {1, cos t, sin t, cos2t, sin2t, . . .} have been introduced as a particularly appropriate basis

for periodic functions. The functions cos(kt), sin(kt) are also known as solution of the homogeneous di�erential

equation

y

¹¹

+k

2

y =0.

The diferential operator is a linear mapping

d

q

dt

q

(±y +²z)=±

d

q

y

dt

q

+²

d

q

z

dt

q

,

and hence has an associated linear mapping. An approximation of the second-order di�erentiation operation is

given by the �nite di�erence formulas

y

i

¹¹

=y

¹¹

(t

i

)E

1

h

2

(y

i+1

�2y

i

+y

i�1

)
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