MATH383: A first course in differential equationsFebruary 7, 2020

Homework 5

Due date: Feb 13, 2020, 11:55PM.

Bibliography: Lesson07.pdf Lesson08.pdf. The first exercise in each problem set is solved for you to use as a model.

  1. Consider 𝒱=3, 𝒮=. Establish whether for given operations , (𝒱,𝒮,,) is a vector space or not.

    Ex 1

    𝒙=(x1,x2,x3),𝒚=(y1,y2,y3), 𝒙,𝒚𝒱=3, 𝒙𝒚=(2x1+2y1,2x2+2y2,2x3+2y3), and with α𝒮=, α𝒙=(αx1,αx2,αx3)

    Solution. Check associativity, (𝒙𝒚)𝒛=𝒙(𝒚𝒛). Compute

    𝒖=𝒙𝒚=(2x1+2y1,2x2+2y2,2x3+2y3) 𝒗=𝒚𝒛=(2y1+2z1,2y2+2z2,2y3+2z3)
    𝒖+𝒛=(4x1+4y1+2z1,4x2+4y2+2z2,4x3+4y3+2z2)
    𝒙+𝒗=(2x1+4y1+4z1,2x2+4y2+4z2,2x2+4y2+4z2)

    Since 𝒖+𝒛𝒙+𝒗, associativity is not satisified and (𝒱,𝒮,,) is not a vector space. Note: it is sufficient to find one unsatisfied property to prove that (𝒱,𝒮,,) is not a vector space. However to prove that (𝒱,𝒮,,) is indeed a vector space, all properties must be verified/

    Ex 2

    𝒙𝒚=(x1-y1,x2-y2,x3-y3), α𝒙=(αx1,αx2,αx3).

    Ex 3

    𝒙𝒚=(x1+y1-1,x2+y2-1,x3+y3-1), α𝒙=(αx1,αx2,αx3).

    Ex 4

    𝒙𝒚=(x1+y1,x2-y2,x3+y3), α𝒙=(αx1,αx2,αx3).

    Ex 5

    𝒙𝒚=(x1+y1,x2+y2,x3+y3), α𝒙=(α+x1,αx2,αx3).

  2. Consider 𝒱2×2, a subset of all 2 by 2 real-component matrices with operations

    𝑨,𝑩2×2,𝑨=( a11 a12 a21 a22 ),𝑩=( b11 b12 b21 b22 ),𝑨𝑩=( a11+b11 a12+b12 a21+b21 a22+b22 )
    α𝑨=( αa11 αa12 αa21 αa22 ).

    Determine whether the following are vector spaces

    Ex 1

    𝒱 is the set of skew-symmetric matrices, 𝑨𝒱 𝑨T=-𝑨.

    Solution. From 𝑨=-𝑨T deduce that

    ( a11 a12 a21 a22 )=-( a11 a21 a12 a22 )𝑨=( 0 a -a 0 ).

    Verify vector space properties for 𝑨,𝑩,𝑪𝒱, α,β:

    Closure
    𝑨+𝑩=( 0 a -a 0 )+( 0 b -b 0 )=( 0 a+b -(a+b) 0 )𝒱?
    Associativity
    (𝑨+𝑩)+𝑪=( 0 a+b -(a+b) 0 )+( 0 c -c 0 )=( 0 a+b+c -(a+b+c) 0 )
    𝑨+(𝑩+𝑪)=( 0 a -a 0 )+( 0 b+c -(b+c) 0 )=( 0 a+b+c -(a+b+c) 0 ).?
    Identity
    𝑨+𝟎=( 0 a -a 0 )+( 0 0 0 0 )=( 0 a -a 0 )?
    Inverse
    𝑨+(-𝑨)=( 0 a -a 0 )+( 0 -a a 0 )=( 0 0 0 0 )?
    Commutativity
    𝑨+𝑩=( 0 a+b -(a+b) 0 )=( 0 b+a -(b+a) 0 )=𝑩+𝑨.?
    Distributivity
    α(𝑨+𝑩)=( 0 α(a+b) -α(a+b) 0 )=( 0 α.a+αb) -α.a-αb) 0 )=α𝑨+α𝑩?
    (α+β)𝑨=( 0 (α+β)a -(α+β)a 0 )=( 0 αa+βa -αa-βa 0 )=α𝑨+β𝑨?
    α(β𝑨)=α( 0 βa -βa 0 )=( 0 αβa -αβa 0 )=(αβ)𝑨.?

    All properties are verified, hence skew-symmetric matrices form a vector space.

    Ex 2

    𝒱 is the set of upper-triangular matrices, 𝑨𝒱 a21=0.

    Ex 3

    𝒱 is the set of symmetric matrices, 𝑨𝒱 𝑨T=𝑨.

  3. Determine whether the set 𝒮 is linearly dependent or independent within the vector space 𝒱

    Ex 1
    𝒮={𝒖1,𝒖2}={( 2 1 3 ),( 0 -1 1 )},𝒱=3

    Solution. The first equation of the system a1𝒖1+a2𝒖2=𝟎 is 2a1+0a2=0a1=0. The second equation then states -a2=0, hence a1=a2=0, and 𝒖1,𝒖2 are linearly independent.

    Ex 2
    𝒮={𝒖1,𝒖2,𝒖3}={( 2 1 ),( 1 0 ),( 8 -3 )},𝒱=2
    Ex 3
    𝒮={𝒖1,𝒖2,𝒖3}={( 1 0 1 ),( -1 1 0 ),( 0 1 1 )},𝒱=3

  4. Determine whether the set 𝒮 is linearly dependent or independent within the vector space 𝒱. Here 𝒫n is the set of polynomials of degree at most n.

    Ex 1
    𝒮={𝒑1,𝒑2,𝒑3}={1,2x2+x+2,-x2+x},𝒱=𝒫2

    Solution. Denote 𝒒=a1𝒑1+a2𝒑2+a3𝒑3, and consider the equality 𝒒=𝟎. Note that 𝟎 is the zero polynomial, i.e. 𝒒(x)=𝟎(x)

    a1+a2(2x2+x+2)+a3(-x2+x)=0forallx

    For x=0 obtain a1+a2=0. Subsequently for x=1 obtain a1+5a2=0. Subtract to obtain 4a2=0a2=0, and then a1=0. Then for x=-1 obtain -2a3=0a3=0. The only choice of a1,a2,a3 to have a1𝒑1+a2𝒑2+a3𝒑3=𝟎 is a1=a2=a3=0, hence 𝒮 is a linearly independent set of vectors.

    Ex 2
    𝒮={𝒑1,𝒑2,𝒑3}={2,x,x3+2x2-1},𝒱=𝒫3
    Ex 3
    𝒮={𝒑1,𝒑2,𝒑3,𝒑4}={x,x2,x2+2x,x3-x+1},𝒱=𝒫3