Overview

- Linear first order differential equations
- Solution existence, uniqueness for first order differential equations
- Nonlinear first order differential equations: transformation to separable DEs

(Textbook: 2.1-2.2, pp.30-52)

- Implicit form of a first order DE: F(x, y, y') = 0
- Explicit form of a first order DE: y' = f(x, y)
- The term *linear function* has two different meanings:
 - In calculus, g(x) is a linear function if it is of the form g(x) = ax + b
 - In linear algebra, g(x) is a linear function if g(ax+by)=ag(x)+bg(y)
- A bivariate function can be linear in one of its arguments, i.e., f(x,y) is linear in y, if it is of the form $f(x,y) = a(x) \ y + b(x)$
- An explicit, first-order DE is said to be linear if the slope function is linear in the dependent variable, $y' = f(x, y) = a(x) y + b(x) \Rightarrow$

$$y' + p(x) y = q(x)$$

with
$$p(x) = -a(x)$$
, $q(x) = b(x)$

- The linear DE y' + p(x)y = q(x), is said to be homogeneous if q(x) = 0
- A linear homogeneous DE always has y = 0 as a solution, known as the trivial solution. Any other solution, $y \neq 0$ is nontrivial.
- A homogeneous, linear first-order DE is separable. Formally, one finds:

$$y' + p(x)y = 0 \Rightarrow \frac{y'}{y} = -p \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \ln y = -p \Rightarrow \ln y = -\int p(x) \, \mathrm{d}x + \ln C$$
$$y(x) = Ce^{-\int p(x) \, \mathrm{d}x} = Ce^{-P(x)}, \text{ with } P(x) = \int p(x) \, \mathrm{d}x \tag{1}$$

• "Formally" because appropriate mathematical conditions must be stated

Theorem. $y(x) = Ce^{-\int p(x) dx}$ is the general solution of y'(x) + p(x)y = 0 for $x \in (a,b)$, if p(x) is continuous on (a,b).

Consider now

$$y' + p(x) y = q(x) \tag{2}$$

- Let $y_h(x)$ denote a non-trivial solution of y' + p(x) y = 0 (homogeneous)
- Method of variation of parameters: seek solution of (2) as $y(x) = u(x) y_h(x)$
- Compute $y' = u' y_h + u y_h'$, and replace in (2)

$$u'y_h + uy'_h + p(x)u(x)y_h(x) = q(x) \Rightarrow u' = \frac{q(x)}{y_h(x)} \Rightarrow u(x) = \int \frac{q(x)}{y_h(x)} dx + C$$

Solution of (2) is

$$y(x) = \left[\int \frac{q(x)}{y_h(x)} dx + C \right] y_h(x).$$

Example: $y' + 2y = x^3 e^{-2x}$

Homogeneous: $y' + 2y = 0 \Rightarrow y_h(x) = e^{-2x}$

Variation of parameters: $y(x) = u(x) e^{-2x} \Rightarrow u' = x^3 \Rightarrow u(x) = \left(\frac{1}{4}x^4 + C\right)$

(%i13) ode2('diff(y,x)+2*y=0,y,x);

(%o13) $y = \%c e^{-2x}$

(%i12) ode2('diff(y,x)+2*y= $x^3*exp(-2*x),y,x$);

(%o12)
$$y = \left(\frac{x^4}{4} + \%c\right) e^{-2x}$$

(%i13)

Theorem. If p, q are continuous on (a, b), and y_h satisfies

$$y_h' + p(x)y_h = 0,$$

then:

a) the general solution of y' + p(x) y = q(x) on (a, b) is

$$y(x) = y_h(x) \left(c + \int \frac{q(x)}{y_h(x)} dx \right);$$

b) if $x_0 \in (a, b)$, $y_0 \in \mathbb{R}$, the unique solution of y' + p(x) y = q(x), $y(x_0) = y_0$ is

$$y(x) = y_h(x) \left(\frac{y_0}{y_h(x_0)} + \int_{x_0}^x \frac{q(t)}{y_h(t)} dt \right).$$

Separable nonlinear equations can be solved by integration

$$y' = \frac{g(x)}{h(y)} \Rightarrow h(y) dy = g(x) dx \Rightarrow \int h(y) dy = \int g(x) dx$$

 Some non-separable, nonlinear equations can be reduced to separable equations by transformation of the dependent variable

Example: Bernoulli equation

$$y' + p(x) y = q(x) y^r, r \in \mathbb{R} \setminus \{0, 1\}$$
 (3)

(%i15) plotdf(y*(1+x*y),[trajectory_at,-2,-0.2]);

