Overview

- Exact solutions to first-order differential equations
- Examples

Rewrite a first-order DE as a relationship between infinitesimal increments

 $y' = \frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \Leftrightarrow M(x, y) \,\mathrm{d}x + N(x, y) \,\mathrm{d}y = 0. \text{ (exact differential)}$

Compare with $dF(x, y) = F_x dx + F_y dy$.

Theorem. If $F: \mathbb{R}^2 \to \mathbb{R}$ has continuous partial derivatives F_x, F_y , then

F(x, y) = c,

is an implicit solution of $F_x(x, y) dx + F_y(x, y) dy = 0$. ($F_x \equiv M, F_y \equiv N$)

Theorem. If $M, N: \mathbb{R}^2 \to \mathbb{R}$, are continuous with continuous partial derivatives in some open rectangle R, then M(x, y)dx + N(x, y)dy is an exact differential on R if and only if $M_y(x, y) = N_x(x, y)$ in R. Example 1

$$F(x, y) = x^4 y^3 + x^2 y^5 + 2xy = c$$

(%i11) F: x⁴*y³+x²*y⁵+2*x*y

(%i12) diff(F,x);

(%o12) $2xy^5 + 4x^3y^3 + 2y$

(%i13) diff(F,y);

(%o13) $5 x^2 y^4 + 3 x^4 y^2 + 2 x$

$$(2xy^{5} + 4x^{3}y^{3} + 2y)dx + (5x^{2}y^{4} + 3x^{4}y^{2} + 2x)dy = 0 \Rightarrow$$
$$\frac{dy}{dx} = -\frac{2xy^{5} + 4x^{3}y^{3} + 2y}{5x^{2}y^{4} + 3x^{4}y^{2} + 2x}, \frac{dx}{dy} = -\frac{5x^{2}y^{4} + 3x^{4}y^{2} + 2x}{2xy^{5} + 4x^{3}y^{3} + 2y}.$$

Check if the following differential form is exact

 $3x^2 y \mathrm{d}x + 4x^3 \mathrm{d}y = 0.$

Denote: $M(x, y) = 3x^2 y$, $N(x, y) = 4x^3$. Compute

 $M_y = 3x^2, N_x = 12x^2 \Rightarrow M_y \neq N_x \Rightarrow \text{not exact.}$

Consider $M(x, y) = 4x^3y^3 + 3x^2$, $N(x, y) = 3x^4y^2 + 6y^2$. Find F(x, y) such that $F_x = M$, $F_y = N$ if M(x, y) dx + N(x, y) dy = 0.

1. Integrate $F_x = M$ w.r.t. x

$$\int F_x \,\mathrm{d}x = \int M \,\mathrm{d}x \Rightarrow F - f(y) = \int (4x^3y^3 + 3x^2) \,\mathrm{d}x = x^4y^3 + x^2.$$

2. Replace $F = f(y) + x^4y^3 + x^3$, in $F_y = N$

$$f' + 3x^4y^2 = 3x^4y^2 + 6y^2.$$

3. Integrate to find f

$$f = 2y^3 \Rightarrow F = x^4y^3 + x^3 + 2y^3.$$