Overview

- Matrix rank
- Matrix nullity
- Rank-nullity theorem
- Row-echelon operations to determine rank, nullity

• Consider vectors $(a_1 \ a_2 \ \dots \ a_n) = A$ within the Euclidean vector space $(\mathbb{R}^m, +, \mathbb{R}, \cdot)$. Ask: how much of \mathbb{R}^m is within the range of A?

Definition. The (column) rank of a matrix A is the dimension of its range, $\mathcal{R}(A)$ (intuively, the number of linearly independent columns), $r = \operatorname{rank}(A) = \dim \mathcal{R}(A)$

Notes:

- $r \leq \min(m, n)$, since there are n vectors, and there can't be more linearly independent vectors than m, the dimension of the vector space \mathbb{R}^m
- The column rank is the same as the row rank or dimension of $\mathcal{R}(\boldsymbol{A}^T)^1$.

^{1.} The simplest proof is to consider r > 0 as the smallest integer for which there exist matrices $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{r \times n}$ such that $A = BC \Rightarrow A^T = C^T B^T$, and interpret B as the minimal spanning set of A, and C^T as the minimal spanning set of A^T . Both have r vectors. If no such positive integer exists then A = 0 of rank 0.

• Recall that the null space of matrix A is $\mathcal{N}(A) = \{x \mid Ax = 0\}$.

Definition. The nullity of a matrix A is the dimension of its null space, $\mathcal{N}(A)$ (intutively, the dimension of the space that cannot be reached by linear combination), $z = \operatorname{null}(A) = \dim \mathcal{N}(A)$

The rank-nullity theorem essentially states that a vector can either be reached or not reached by a linear combination, r + z = n, there are no other possibilities.

- Reduction to row-echelon form can be used to determine matrix rank and nullity. Allowed operations:
 - multiply a row by a scalar
 - interchange rows
 - add a row to another row
- The objective is to form ones on the diagonal. The number of ones is the rank of the matrix.