Constant-coefficient homogeneous equations
Non-homogeneous equations
Undetermined coefficients
Example
(%i3)
de: 'diff(y,x,2) + 6*'diff(y,x) + 5*y
(%i4)
gsoln: ode2(de,y,x);
(%i6)
psoln: ic2(gsoln,x=0,y=3,'diff(y,x)=-1)
(%i11)
plot2d(rhs(psoln),[x,0,5],[ylabel,"y(x)"])$
Example
(%i12)
de: 'diff(y,x,2) + 6*'diff(y,x) + 9*y
(%i13)
gsoln: ode2(de,y,x);
(%i14)
psoln: ic2(gsoln,x=0,y=3,'diff(y,x)=-1)
(%i15)
plot2d(rhs(psoln),[x,0,5],[ylabel,"y(x)"])$
Example
(%i16)
de: 'diff(y,x,2) + 4*'diff(y,x) + 13*y
(%i17)
gsoln: ode2(de,y,x);
(%i18)
psoln: ic2(gsoln,x=0,y=2,'diff(y,x)=-3)
(%i19)
plot2d(rhs(psoln),[x,0,5],[ylabel,"y(x)"])$
Theorem. Consider continuous on , and , . The initial value problem has a unique solution on .
Theorem. If is a fundamental solution set for on , and is a particular solution of the on , then the solution of the problem is of the form
Example
Example
(%i24)
de: 'diff(y,x,2) - 2*'diff(y,x) + y + 3 + x -x^2
(%i25)
gsoln: ode2(de,y,x);
(%i26)
psoln: ic2(gsoln,x=0,y=-2,'diff(y,x)=1)
(%i23)
plot2d(rhs(psoln),[x,0,5],[ylabel,"y(x)"])$
Example
(%i27)
de: x^2*'diff(y,x,2) + x*'diff(y,x) -4*y - 2*x^2
(%i28)
gsoln: ode2(de,y,x);
(%i30)
psoln: ic2(gsoln,x=1,y=1,'diff(y,x)=1)
(%i32)
plot2d(rhs(psoln),[x,1,5],[ylabel,"y(x)"])$
Consider equations of form , . The approach to finding a particular solution is to try the form
For , a constant, try
If , try
For general , try
Example
(%i33)
de:'diff(y,x,2)-3*'diff(y,x)+2*y-exp(3*x)*(x^2+2*x-1)
(%i34)
gsoln: ode2(de,y,x);
(%i36)
psoln: ic2(gsoln,x=0,y=1,'diff(y,x)=1)
(%i38)
plot2d(rhs(psoln),[x,0,1],[ylabel,"y(x)"])$