
MATH383: Dynamical systems general concepts

Overview

� Overview: nonlinear systems of differential equations

� Flow maps, stable and unstable equilibria

� Poincaré sections

� Examples:

− Logistic map

− Duffing oscillator

− Lorenz system

− Van der Pol oscillator



Overview

� Nonlinear systems of differential equations y 0= f(t; y), y:R!Rn, f :R�Rn!Rn

� Very few nonlinear systems can be solved analytically

� Solutions can be found by numerical approximation (e.g., Euler, Runge-Kutta)

� Numerical solutions can be combined with analysis of qualitative behavior

� Tools:

− f continuous) solutions are unique, trajectories from different initial values do not cross

− Effect of system parameters p, y 0= f (t; y; p), is crucial in understanding behavior, e.g.

my 00+ cy 0+ ky= f ; p=( m c k )

− Flow map: �t(y0; p) = y(t; y0; p) is the family of trajectories that start from initial
condition (0; y0). Interest is to determine how families of trajectories change when
varying the system parameters p



Logistic map

� Many of the features of dynamical system analysis are exhibited by a simple model, the
logistic map describing the population y~(t~) of a species.

� Consider first the Malthusian model: population increase is proportional to current population

y~0= r y~) y~(t~)= ert y~0;

that predicts (unbounded) exponential growth starting from initial population y~0.

� Modify the above model to include the effect of diminshing resources by modifying the growth
rate to become r(1− y~/K). When the population y~ reaches the carrying capacity K, the
population growth rate becomes zero

y~0= r y~

�
1− y~

K

�
) y~(t~)=

Kert~

K + y0(ert
~− 1)

y~0

� Are two parameters needed? No, rescaling time t= t~/r, and population y= y~/K leads to

y 0= y (1− y); y(t)=
et

1+ y0(et− 1)
y0

a differential equation with no parameters.



Equilibria

� A first concept in dynamical systems analysis is that of an equilibrium point, a state of the
system that does not change. For the logistic map y 0= y (1− y) there are two equilibria

y=0 and y=1:

� A second concept is that of equilibrium point stability , if the system is slightly displaced
from an equilibrium point, does it return to its previous state or does it evolve to a different
equilibrium?

� Consider y 0= f(y). Equilibria are determined by roots of f , f(y)=0. Denote a root by y�.

� For the logistic equation the equilibria are y1�=0 and y2�=1

� Asymptotic behavior of solution to logistic equation

lim
t!1

y(t)= lim
t!1

et

1+ y0(et− 1)
y0=1 if y0=/ 0

− y1
�=0 is an unstable equilibrium point, after small perturbation y! 1=/ y1

�

− y2
�=1 is a stable equilibrium point, after small perturbation, y! 1= y2

�



Phase space (y; y 0) representations

� The flow map for logistic equation
is �t(y0) = y(t; y0) = et y0/ [1 +
y0(e

t− 1)]

� Figure shows �t(0);�t(0.05); :::
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Logistic equation flow map

� Same information is more economi-
cally shown in a phase plot of (y(t);
y 0(t))= (y; y(1− y))

� A single curve showing flow from
unstable equilibrium (0;0) to stable
equilibrium (1; 0)

� Also: does not require knowledge of
solution since y 0= f(y) is given 0.0 0.2 0.4 0.6 0.8 1.0
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Logistic equation plot



Insufficiency of phase portraits for systems with n> 2 dependent variables

� Consider unforced harmonic oscillator y 00+ y 0+�y=0, y 0= v, v 0=−v−�y
� Phase portrait (y 0; v 0) can readily be represented and the flow map �t(y0; p)= y(t; y0; p)

is known analytically, e.g., �t(y0; =0; �)= (cos �
p

t; sin �
p

t).

(%i82) plotdf([v,-gamma*v-kappa*y],[y,v],
[trajectory_at,.5,.5],
[y,-1,1],[v,-1,1],
[direction,forward],
[parameters,"gamma=0,kappa=1"],
[sliders,"gamma=0:2,kappa=0.5:2.0"])$

(%i83)

� However when y 0 = f(y), y 2 Rn, n > 2,
phase portraits become difficult to represent
graphically

� Observations:

− for =0, trajectories cross axes at regular
intervals, at the same point

− for  >0; trajectories cross axes at regular
intervals, approaching origin as t! 0
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Poincaré sections

� The stroboscopic effect allows visualization of rotational or oscillatory motion

Undamped motion Damped motion
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A Poincaré section is the projection onto the y-axis of points sampled at periodic intervals



Duffing oscillator

� Consider the forced, non-linear oscillator, y 00+ �y 0+�y+�y3=  sin(!t), (Duffing)

(%i86) plotdf([v,-v/10+y-beta*y^3],[y,v],
[trajectory_at,.5,.5],[nsteps,10000],
[y,-5,5],[v,-5,5],
[direction,forward],
[parameters,"beta=0.25"],
[sliders,"beta=0.1:0.4"])$

(%i87)
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Poincare section
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Lorenz system

� E. Lorenz (1963, J. Atmos. Sci)
�simple� model for weather predic-
tion (�; �; � > 0)

x0=� (y−x)
y 0=x(�− z)− y
z 0=xy− �z

u0= f(u);u=

0@ x
y
z

1A
� Equilibria are solutions of f(u)=0

u1
�=0

u2;3
� =

0BB@ � �(�− 1)
p
� �(�− 1)
p

�− 1

1CCA



Lorenz system Poincaré sections
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Poincare section
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� Successive construction of Poincaré sections, m= 2500; 5000; 10000; 25000 samples



Van der Pol oscillator

� x00− �(1−x2)x0+x=0)

x0= y; y 0= �(1−x2)y−x

(%i4) plotdf([y,mu*(1-x^2)*y-x],[x,y],
[trajectory_at,1,1],
[x,-5,5],[y,-5,5],
[direction,forward],
[parameters,"mu=1"],[sliders,"mu=-1:1"],
[versus_t,1])$

(%i5)
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Poincare section
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