MATH383: Dynamical systems general concepts

Overview

Overview: nonlinear systems of differential equations
Flow maps, stable and unstable equilibria

Poincaré sections

Examples:

— Logistic map

— Duffing oscillator

— Lorenz system

— Van der Pol oscillator



Overview

e Nonlinear systems of differential equations y'= f(t,y), y: R —R", f: R xR"—R"
e Very few nonlinear systems can be solved analytically
e Solutions can be found by numerical approximation (e.g., Euler, Runge-Kutta)
e Numerical solutions can be combined with analysis of qualitative behavior
e Tools:
— f continuous =- solutions are unique, trajectories from different initial values do not cross

— Effect of system parameters p, y'= f(t,y; p), is crucial in understanding behavior, e.g.
my" +cy' +ky=f,p=(m c k)

—  Flow map: ®:(yo; p) = y(t; yo; p) is the family of trajectories that start from initial
condition (0, yg). Interest is to determine how families of trajectories change when
varying the system parameters p



Logistic map

e Many of the features of dynamical system analysis are exhibited by a simple model, the

logistic map describing the population () of a species.

e Consider first the Malthusian model: population increase is proportional to current population
g'=rj=g(t)=e"" o,

that predicts (unbounded) exponential growth starting from initial population .

e Modify the above model to include the effect of diminshing resources by modifying the growth
rate to become (1 — ¢/ K). When the population ¢ reaches the carrying capacity K, the
population growth rate becomes zero

Kerf g
= 0
K+ yo(e™t —1)

g'zr;&(l—%):»@(f):

e Are two parameters needed? No, rescaling time t =1 /r, and population y =7/ K leads to

et

T Tdylet—1)

y'=y(1—y),y(t)

a differential equation with no parameters.



Equilibria

e A first concept in dynamical systems analysis is that of an equilibrium point, a state of the
system that does not change. For the logistic map y'=y (1 — y) there are two equilibria

y=0 and y=1.

e A second concept is that of equilibrium point stability, if the system is slightly displaced
from an equilibrium point, does it return to its previous state or does it evolve to a different
equilibrium?

e Consider y'= f(y). Equilibria are determined by roots of f, f(y)=0. Denote a root by ™.
e For the logistic equation the equilibria are y7 =0 and y5 =1

e Asymptotic behavior of solution to logistic equation

t

lim y(t)= lim

=1if 0
t— 00 t—oo 1+ yo(e! —1) S0 if yo 7

— yi=0is an unstable equilibrium point, after small perturbation y— 1+ v

— y5=11Is a stable equilibrium point, after small perturbation, y— 1 =1vy3



Phase space (y, y’) representations

The flow map for logistic equation
is ©4(yo) = y(t; yo) =" yo/[1 +
yo(e' —1)]

Figure shows ©4(0), ®.(0.05), ...

Same information is more economi-
cally shown in a phase plot of (y(%),

y'(t)=(y,y(1—y))

A single curve showing flow from
unstable equilibrium (0, 0) to stable
equilibrium (1,0)

Also: does not require knowledge of
solution since iy’ = f(y) is given
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Insufficiency of phase portraits for systems with n > 2 dependent variables

e Consider unforced harmonic oscillator v + vy’ +ky =0, y' =v, v'=—yv—Ky

e Phase portrait (y’,v’) can readily be represented and the flow map @.(yo; p)

=y(t; Yyo; )

is known analytically, e.g., ®.(yo; v =0, k) = (cos \/k t,sin/k t).

(%182) plotdf ([v,-gammaxv-kappa*y], [y,v],
[trajectory_at,.5,.5],
[y,-1,11, [v,-1,1],
[direction,forward],
[parameters, "gamma=0, kappa=1"],
[sliders, "gamma=0:2,kappa=0.5:2.0"])$

(%183)

e However when y' = f(y), y € R", n> 2,
phase portraits become difficult to represent

graphically

e Observations:
— for v=0, trajectories cross axes at regular
intervals, at the same point

— for v >0, trajectories cross axes at regular
intervals, approaching origin as t — 0
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Poincaré sections

e The stroboscopic effect allows visualization of rotational or oscillatory motion

Undamped motion Damped motion
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A Poincaré section is the projection onto the y-axis of points sampled at periodic intervals



Duffing oscillator

o Consider the forced, non-linear oscillator, 3" + dy’ + ay+By> = vsin(wt), (Duffing)

(%186) plotdf([v,-v/10+y-betaxy~3], [y,v], v
[trajectory_at,.5,.5], [nsteps,10000],

ly,-5,5],[v,-5,5],
[direction,forward],
[parameters, "beta=0.25"],
[sliders,"beta=0.1:0.4"])$

Poincare section
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Lorenz system

e E. Lorenz (1963, J. Atmos. Sci)
“simple” model for weather predic-

tion (3, p, o >0)

v =0 (y—a)
y'=z(p—2)—y
Z=xy— Bz

e Equilibria are solutions of f(u)=0
ui=0
+vB(p—1)
uzs=| +£/B(p—1)
p—1
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Van der Pol oscillator

o 2/ —u(l—a*a'+2=0=

(%i4) plotdf ([y,mux*(1-x"2)*y-x],[x,y], Y,
[trajectory_at,1,1],
[x,-5,5], [y,-5,5],
[direction,forward],
[parameters,"mu=1"], [sliders,"mu=-1:1"],
[versus_t,1]1)$

(%i5)

Poincare section
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