MATH383: A first course in differential equationsJanuary 16, 2019

Homework 2

Due date: Jan 23, 2019, 11:55PM.

Bibliography: Trench Chap. 2

  1. Exercises 6-9, p. 41

    Ex 6

    y'+(1+x)y/x=0, y(1)=1. Assume x0, and solve by integration

    y'y=-x+1xdyy=-x+1xdxlny-lnc=-(x+lnx)y=cxe-x.y(1)=ce=1c=e

    Solution is y=e1-x/x. Check in Maxima

    (%i4) 

    ode2('diff(y,x)/y=-(x+1)/x,y,x);

    (%o4) y=%ce-xx

    (%i5) 

    ic1(%,x=1,y=1);

    (%o5) y=e1-xx

    Ex 7

    xy'+(1+1/lnx)y=0,y(e)=1. Assume x0, and solve by integration

    y'y=-1xlnx-1xlny-lnc=-(1xlnx+1x)dx=-ln(lnx)-lnx=-ln(xlnx)y=cxlnx
    y(e)=ce=1y=exlnx.

    Verify in Maxima:

    (%i9) 

    ode2('diff(y,x)*x+(1+1/log(x))*y=0,y,x);

    (%o9) y=%cxlog(x)

    (%i10) 

    ic1(%,x=%e,y=1);

    (%o10) y=exlog(x)

    (%i11) 

    
                            

    Ex 8

    xy'+(1+xcotx)y=0,y(π/2)=2. Assume x0, and solve by integration

    y'y=-1x-1cotxlny-lnc=-lnx-lnsinxy=cxsinx
    y(π/2)=2c/π=2c=π.y=πxsinx

    Verify in Maxima

    (%i16) 

    ode2('diff(y,x)*x+(1+x*cot(x))*y=0,y,x);

    (%o16) y=%cxsin(x)

    (%i17) 

    ic1(%,x=%pi/2,y=2);

    (%o17) y=πxsin(x)

    (%i18) 

    
                            

    Ex 9

    y'+ky/x=0,y(1)=3. Integrate:

    y'y=-kxlny-lnc=-klnxy=cx-k,y(1)=c=3.y(x)=3x-k

    (%i22) 

    ode2('diff(y,x)+k*y/x=0,y,x);

    (%o22) y=%ce-klog(x)

    (%i23) 

    ic1(%,x=1,y=3);

    (%o23) y=3e-klog(x)

    (%i24) 

    
                            

  2. Exercises 12-15, p.41

    Ex 12

    y'+3y=1. Solve by integration

    y'=1-3y=dydxdx=dy1-3yx+c=-13ln(1-3y)

    (%i1) 

    ode2('diff(y,x)=1-3*y,y,x);

    (%o1) y=e-3x(e3x3+%c)

    (%i3) 

    plotdf(1-3*y);

    (%i4) 

    
                            

    Ex 13

    y'+(1/x-1)y=-2/x. Use variation of parameters. Homogeneous equation y'+(1/x-1)y=0 has solution:

    y'y=1-1xlny-lnc=x-lnxyh=ex/x

    Seek solution of form y=uyhu'=-2e-xu=2e-x+cy=(2+cex)/x. Verify in Maxima

    (%i3) 

    ode2('diff(y,x)+(1/x-1)*y=-2/x,y,x);

    (%o3) y=(2e-x+%c)exx

    (%i5) 

    plotdf(-2/x-(1/x-1)*y,[x,.1,4.1],[y,-2,2]);

    (%i6) 

    
                            

    Ex 14

    y'+2xy=xe-x2. Solve by variation of parameters. Homogeneous equation solution

    y'y=-2xyh=e-x2(particularsolution)

    Variation of parameters y=uyhu'=xu=x2/2+cy=(x2/2+c)e-x2. Verify in Maxima

    (%i7) 

    ode2('diff(y,x)+2*x*y=x*exp(-x^2),y,x);

    (%o7) y=(x22+%c)e-x2

    (%i9) 

    plotdf(-2*x*y+x*exp(-x^2),[x,-2,2],[y,-2,2]);

    Ex 15

    y'+2xy/(1+x2)=e-x/(1+x2). Solve by variation of parameters. Homogeneous solution:

    y'y=-2x1+x2yh=11+x2.

    Seek solution y=uyh

    u'=e-xu=-e-x+cy=c-e-x1+x2

    Verify in Maxima

    (%i14) 

    ode2('diff(y,x)+2*x*y/(1+x^2)=exp(-x)/(1+x^2),y,x);

    (%o14) y=%c-e-xx2+1

    (%i15) 

    plotdf(-2*x*y/(1+x^2)-exp(-x)/(1+x^2),[x,-2,2],[y,-2,2]);

    (%i16) 

    
                            

  3. Exercises 30-33, p.42

    Ex 30
    (x-1)y'+3y=1(x-1)3+sinx(x-1)2,y(0)=1.

    Solve by variation of parameters. Homogeneous solution

    y'y=-3x-1lny=-3ln(x-1)yh=1(x-1)3.

    Seek solution as y=uyh.

    u'=1x-1+sinxu=ln(x-1)-cosx+c
    y=ln(x-1)-cosx+c(x-1)3,y(0)=1-c=1c=0

    Verify

    (%i6) 

    y30: (log(x-1)-cos(x))/(x-1)^3

    (%o6) log(x-1)-cos(x)(x-1)3

    (%i11) 

    fullratsimp((x-1)*diff(y30,x)+3*y30);

    (%o11) (x-1)sin(x)+1x3-3x2+3x-1

    (%i12) 

    partfrac(%,x);

    (%o12) sin(x)(x-1)2+1(x-1)3

    (%i13) 

    
                          

    Ex 31

    xy'+2y=8x2,y(1)=3. Solve by variation of parameters. Homogeneous solution:

    y'y=-2xyh=x-2

    Try y=uyhu'=8x3u=2x4+cy=(2x2+c/x2). Initial condition y(1)=2+c=3c=1, and solution is y=2x2+c/x2. Verify in Maxima

    (%i13) 

    ode2('diff(y,x)*x+2*y=8*x^2,y,x);

    (%o13) y=2x4+%cx2

    (%i14) 

    ic1(%,x=1,y=3);

    (%o14) y=2x4+1x2

    (%i15) 

    partfrac(%,x);

    (%o15) y=2x2+1x2

    (%i16) 

    
                            

    Ex 32

    xy'-2y=-x2,y(1)=1. Solve by variation of parameters. Homogeneous solution

    y'y=2xyh=x2.

    Try y=uyhu'=-1/xu=-lnx+cy=(c-lnx)x2. Initial condition: y(1)=c=1. Solution:

    y=(1-lnx)x2.

    Verify:

    (%i16) 

    ode2('diff(y,x)*x-2*y=-x^2,y,x);

    (%o16) y=x2(%c-log(x))

    (%i17) 

    ic1(%,x=1,y=1);

    (%o17) y=x2-x2log(x)

    (%i18) 

    
                            

    Ex 33

    y'+2xy=x,y(0)=3. By variation of parameters. Homogeneous solution:

    y'y=-2xyh=e-x2.

    Try y=uyhu'=xex2u=12ex2+cy=(12+ce-x2),y(0)=12+c=3c=52

    y=12(1+5e-x2).

    Verify:

    (%i18) 

    ode2('diff(y,x)+2*x*y=x,y,x);

    (%o18) y=e-x2(ex22+%c)

    (%i19) 

    ic1(%,x=0,y=3);

    (%o19) y=e-x2(ex2+5)2

    (%i20) 

    
                      

  4. Exercises 1-4, p. 52

    Ex 1

    y'=(3x2+2x+1)/(y-2). Assume y2, and integrate

    (y-2)dy=(3x2+2x+1)dx12(y-2)2=x3+x2+x+c.

    There are two solutions

    y=2±2(x3+x2+x+c)

    Ex 2

    (sinx)(siny)+(cosy)y'=0. Assume siny0, divide by siny and integrate

    cotydy=-sinxdxln(siny)=cosx+csiny=ec+cosx.

    Solutions will only exist in intervals such that 0<ec+cosx1c+cosx0. In such intervals there are infinitely many solutions y=(-1)karcsinec+cosx+kπ,k. Rewriting the DE as y'=f(x,y)=-sinxtany, notice that f is not continuous at ±kπ/2.

    Ex 3

    xy'+y2+y=0. For x0, rewrite to obtain a Bernoulli equation y'+y/x=-y2/x. Solve homogeneous equation

    y'y=-1xyh=1x.

    Try y=uyhu'yh=-(uyh)2/x

    u'u2=-yhx=-1x21u=c-1xu=xcx-1y=1cx-1

    (%i23) 

    y3: 1/(c*x-1);

    (%o23) 1cx-1

    (%i24) 

    x*diff(y3,x)+y3^2+y3

    (%o24) 1cx-1-cx(cx-1)2+1(cx-1)2

    (%i25) 

    fullratsimp(%)

    (%o25) 0

    (%i26) 

    
                            

    Ex 4

    y'ln|y|+x2y=0. For y>0 obtain

    y'lnyy=-x212(lny)2=-13x3+12c

    There are two solutions

    y=exp[±c-23x3].