MATHS383: A first course in differential equations January 23, 2019
HOMEWORK 3

Due date: Jan 30, 2019, 11:55PM.
Bibliography: Trench Chap. 2
1. Exercises 1-4, p. 61

Ex.1. y'= f(z,y) = (2?4 y?) /sinz. Both f and f,=2y/sinz are continous in y except when zy= k.
A unique solution is found for some interbal for any x¢+ km, k € Z, any .

Ex.2. y'= f(z,y)=(e"+y)/(2*+ y?). Calculate

_ 2+ =2(e*+y)y

fy (72 + y2)2
A unique solution is found for (zo, yo) # (0, 0).
Ex.3. y'= f(x,y)=tan (zy). Compute
x
Ju= cos?(zy)

A unique solution is found for cos(z yo) #0=- 2o yoF kn +7/2, k € Z.
Ex. 4. y'= f(z,y) = (2*+ y*) /In(zy). Compute

Z2+ 2
_2y1n(xy)— yy ~ 2y%In(zy) —a*— 92

o In?(zy) yln?(zy)

A unique solution is found for zoyy # 1, xeyo > 0.

2. Exercises 15,16, p.61
Ex.15.

a) Compute 3’ by differentiating the analytical forms on each branch

0 —co<r<—1 0 —oco<r<—1
y=q (2*—1°° —l<z<l =y'= wa(xZ—l)?/?’ —l<r<l1
0 ISz <oo 0 l<zr<oo

At the transition point between branches the definition of the derivative from each side must be used

) —y(-1) ) 0
1= y@) —y(=) _ _o.
yl( ) :E—>—111,Im1<—1 x4+ 1 m—)—i,w<—1 T+ 1
o — 2 1\5/3 _13\5/3 5/3
WD =  m Y@ oD @D o)1)
z——1,z>—1 z+1 z——1,z>—1 z+1 z——1l,z>—1 z+1

lim  (z—1)"3x+1)¥3=0.

rz——1,z>-1



Since y/(—1) = y,(—1) =0, the derivative at x = —1 is well defined and y'(—1) =0. A similar
calculation gives y'(1) =0, so the overall derivative can now be defined as

0 —oo<r<—1
y' = wa(:ﬁ—l)?/?’ —l<z<l1
0 1<r<oo

5/3

For |z|>1, y=0 implies 3’ =0 and hence verifies 3’ = 102y?*/®/3. For |z| <1, y = (> —1)*/® implies

I M)TZE(I.2 o 1)2/3’

and replacing in DE gives

100 10

10
2 _1y2/3_ 1Y
5 (@ —1) 3

x (2% —1)%/3)2/° =g (2% —1)%/3, verified.

b) Compute y’ by differentiating the analytical forms on each branch

(

(6 (12— a?)"? —c0<z<—a Elex(x2_a2>2/3 TestsTa
0 —a<r<—1 0 —a<zr<-1
y'=< (22 —1)°/3 —l<z<l =y'=1 10—93(:82—1)2/3 —-l<z<1
0 I<z<h 0 l<z<b
| @ =) b<r<oo 6210Tx(£2_b2)2/3 be < oo
\

The derivative at the transition points between branches must be evaluated by computing limits.
The case €; =€, =0 is already proved in (a). When ¢; =1 compute limits

_ _ 2 2\5/3 B 5/3 5/3
yi(—a) = lim y(@) —y(=a) .,  @=ap” o (@—a)P (@t a)”
r—=—a,x<—a r+a r—=—a,x<—a T+ a t——a,z<—a T4+a
lim (¢ —a) (0 +a) =0,

r——a,r<—a

yr(—a)=  lim y@) —y(=l) lim 0 =0.
T——a,x>—a r+a z——a,z>—a L+ Q

Calculation at x =b for e; =1 is similar, and the derivative is

(

6110%(932—&2)2/3 —co<r<—a

0 —a<r<—1
y'= 10%(:&— N3 l<z<1

0 1<x<b

\6210%(932—192)2/3 b<x<oo

and verifies the ODE on all branches.



3. Exercises 17,18, p.62

Ex. 17. y'= f(z,y) =3z(y — 1)'/3. (a) Since f is continuous in y for y > 1, the DE has some solution
over some open interval that contains o for any (xg, yo) € (—00,00) x [1,00). (b) Since f,=09f /0y is
continuous in y for y > 1, the DE has a unique solution over some open interval that contains z( for
any (Zo, Yo) € (—00,00) X (1,00).

Ex. 18. y'= f(x,y) =32(y — 1)'/3,y(0) = 1. Compute

X

=
discontinuous at y =1 indicating the possibility of non-unique solutions to the IVP. Note that y; =1
is a first solution. The DE is separable, leading to

dy . 3 3 2/3_3 2 3

The initial condition 3(0) =1 implies ¢= 0, hence solutions of (y —1)*®=z? are solutions of the IVP.
Two such solutions are ys 3=1=+ 3. This gives three solutions. Now construct an additional six by
choosing different branches, i.e.,

1 r<0 [ 1+42% 2<0
PV 1408 2507571 >0’
J1 x<0 [ 1-2% 2<0
B=V 123 2>0"7 71 >0
_ 1—2% <0 _ 1423 <0
Ys 1+ 23 >0 1—2% 2>0°

4. Exercises 1-4, p. 79

Ex. 1. M(z,y)dx+ N(z,y)dy=6z%?dz + 4a3ydy. Verify exactness condition M, = N,
M, =122y, N, = 122y, M, = N, = exact differential.
Ex. 2. M(z,y)dx+ N(z,y)dy=(3ycosx +4xe®+2z%e”) dz + (3sinz + 3) dy.
M,=3cosz, N, =3cosz, M,= N, = exact differential.
Ex. 3. M(z,y)dz+ N(z,y)dy =14z dx + 212%y* dy.
M, =422%y? N,=42zy? M, + N, = not an exact differential.
Ex. 4. M(z,y)dz+ N(z,y)dy = (22 — 2y?) dz + (129> — 4zy) dy.

M,=—4y, N, = —4y, M, = N, = exact differential.



